Self-Adaptive Heuristics for Evolutionary Computation
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adapt...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Kramer, Oliver (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2008.
|
Edición: | 1st ed. 2008. |
Colección: | Studies in Computational Intelligence,
147 |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Linkage in Evolutionary Computation
Publicado: (2008) -
Advances in Evolutionary Computing for System Design
Publicado: (2007) -
Hybrid Evolutionary Algorithms
Publicado: (2007) -
Constraint-Handling in Evolutionary Optimization
Publicado: (2009) -
Evolutionary Multi-objective Optimization in Uncertain Environments Issues and Algorithms /
por: Goh, Chi-Keong, et al.
Publicado: (2009)