Cargando…

Metaheuristics for Scheduling in Distributed Computing Environments

Grid computing has emerged as one of the most promising computing paradigms of the new millennium! Achieving high performance Grid computing requires techniques to efficiently and adaptively allocate jobs and applications to available resources in a large scale, highly heterogenous and dynamic envir...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Xhafa, Fatos (Editor ), Abraham, Ajith (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Studies in Computational Intelligence, 146
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-69277-5
003 DE-He213
005 20220118165715.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540692775  |9 978-3-540-69277-5 
024 7 |a 10.1007/978-3-540-69277-5  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Metaheuristics for Scheduling in Distributed Computing Environments  |h [electronic resource] /  |c edited by Fatos Xhafa, Ajith Abraham. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XV, 364 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 146 
505 0 |a Meta-heuristics for Grid Scheduling Problems -- Optimizing Routing and Backlogs for Job Flows in a Distributed Computing Environment -- Robust Allocation and Scheduling Heuristics for Dynamic, Distributed Real-Time Systems -- Supercomputer Scheduling with Combined Evolutionary Techniques -- Adapting Iterative-Improvement Heuristics for Scheduling File-Sharing Tasks on Heterogeneous Platforms -- Advanced Job Scheduler Based on Markov Availability Model and Resource Selection in Desktop Grid Computing Environment -- Workflow Scheduling Algorithms for Grid Computing -- Decentralized Grid Scheduling Using Genetic Algorithms -- Nature Inspired Meta-heuristics for Grid Scheduling: Single and Multi-objective Optimization Approaches -- Efficient Batch Job Scheduling in Grids Using Cellular Memetic Algorithms -- P2P B&B and GA for the Flow-Shop Scheduling Problem -- Peer-to-Peer Neighbor Selection Using Single and Multi-objective Population-Based Meta-heuristics -- An Adaptive Co-ordinate Based Scheduling Mechanism for Grid Resource Management with Resource Availabilities. 
520 |a Grid computing has emerged as one of the most promising computing paradigms of the new millennium! Achieving high performance Grid computing requires techniques to efficiently and adaptively allocate jobs and applications to available resources in a large scale, highly heterogenous and dynamic environment. This volume presents meta-heuristics approaches for Grid scheduling problems. Due to the complex nature of the problem, meta-heuristics are primary techniques for the design and implementation of efficient Grid schedulers. The volume brings new ideas, analysis, implementations and evaluation of meta-heuristic techniques for Grid scheduling, which make this volume novel in several aspects. The 13 chapters of this volume have identified several important formulations of the problem, which we believe will serve as a reference for the researchers in the Grid computing community. Important features include the detailed overview of the various novel metaheuristic scheduling approaches, excellent coverage of timely, advanced scheduling topics, state-of-the-art theoretical research and application developments and chapters authored by pioneers in the field. Academics, scientists as well as engineers engaged in research, development and scheduling will find the comprehensive coverage of this book invaluable. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Manufactures. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Machines, Tools, Processes. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Xhafa, Fatos.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Abraham, Ajith.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540865148 
776 0 8 |i Printed edition:  |z 9783642088759 
776 0 8 |i Printed edition:  |z 9783540692607 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 146 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-69277-5  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)