Cargando…

Neural Networks: Computational Models and Applications

Neural Networks: Computational Models and Applications covers a wealth of important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their ap...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Tang, Huajin (Autor), Tan, Kay Chen (Autor), Yi, Zhang (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Studies in Computational Intelligence, 53
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Feedforward Neural Networks and Training Methods
  • New Dynamical Optimal Learning for Linear Multilayer FNN
  • Fundamentals of Dynamic Systems
  • Various Computational Models and Applications
  • Convergence Analysis of Discrete Time RNNs for Linear Variational Inequality Problem
  • Parameter Settings of Hopfield Networks Applied to Traveling Salesman Problems
  • Competitive Model for Combinatorial Optimization Problems
  • Competitive Neural Networks for Image Segmentation
  • Columnar Competitive Model for Solving Multi-Traveling Salesman Problem
  • Improving Local Minima of Columnar Competitive Model for TSPs
  • A New Algorithm for Finding the Shortest Paths Using PCNN
  • Qualitative Analysis for Neural Networks with LT Transfer Functions
  • Analysis of Cyclic Dynamics for Networks of Linear Threshold Neurons
  • LT Network Dynamics and Analog Associative Memory
  • Output Convergence Analysis for Delayed RNN with Time Varying Inputs
  • Background Neural Networks with Uniform Firing Rate and Background Input.