Cargando…

Stability of Queueing Networks École d'Été de Probabilités de Saint-Flour XXXVI-2006 /

Queueing networks constitute a large family of stochastic models, involving jobs that enter a network, compete for service, and eventually leave the network upon completion of service. Since the early 1990s, substantial attention has been devoted to the question of when such networks are stable. Thi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bramson, Maury (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:École d'Été de Probabilités de Saint-Flour
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-68896-9
003 DE-He213
005 20220120215155.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540688969  |9 978-3-540-68896-9 
024 7 |a 10.1007/978-3-540-68896-9  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Bramson, Maury.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stability of Queueing Networks  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XXXVI-2006 /  |c by Maury Bramson. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a VIII, 198 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a École d'Été de Probabilités de Saint-Flour 
505 0 |a The Classical Networks -- Instability of Subcritical Queueing Networks -- Stability of Queueing Networks -- Applications and Some Further Theory. 
520 |a Queueing networks constitute a large family of stochastic models, involving jobs that enter a network, compete for service, and eventually leave the network upon completion of service. Since the early 1990s, substantial attention has been devoted to the question of when such networks are stable. This volume presents a summary of such work. Emphasis is placed on the use of fluid models in showing stability, and on examples of queueing networks that are unstable even when the arrival rate is less than the service rate. The material of this volume is based on a series of nine lectures given at the Saint-Flour Probability Summer School 2006. Lectures were also given by Alice Guionnet and Steffen Lauritzen. 
650 0 |a Probabilities. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Computer engineering. 
650 0 |a Computer networks . 
650 1 4 |a Probability Theory. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Computer Engineering and Networks. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540864608 
776 0 8 |i Printed edition:  |z 9783540688952 
830 0 |a École d'Été de Probabilités de Saint-Flour 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-68896-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)