Cargando…

Computability of Julia Sets

Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content. Computational hardness of Julia sets is the main subject of this book. By definition,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Braverman, Mark (Autor), Yampolsky, Michael (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Algorithms and Computation in Mathematics ; 23
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-68547-0
003 DE-He213
005 20220120084607.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540685470  |9 978-3-540-68547-0 
024 7 |a 10.1007/978-3-540-68547-0  |2 doi 
050 4 |a QA76.9.A43 
072 7 |a UMB  |2 bicssc 
072 7 |a COM051300  |2 bisacsh 
072 7 |a UMB  |2 thema 
082 0 4 |a 518.1  |2 23 
100 1 |a Braverman, Mark.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computability of Julia Sets  |h [electronic resource] /  |c by Mark Braverman, Michael Yampolsky. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XIII, 151 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algorithms and Computation in Mathematics ;  |v 23 
505 0 |a to Computability -- Dynamics of Rational Mappings -- First Examples -- Positive Results -- Negative Results -- Computability versus Topological Properties of Julia Sets. 
520 |a Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content. Computational hardness of Julia sets is the main subject of this book. By definition, a computable set in the plane can be visualized on a computer screen with an arbitrarily high magnification. There are countless programs to draw Julia sets. Yet, as the authors have discovered, it is possible to constructively produce examples of quadratic polynomials, whose Julia sets are not computable. This result is striking - it says that while a dynamical system can be described numerically with an arbitrary precision, the picture of the dynamics cannot be visualized. The book summarizes the present knowledge about the computational properties of Julia sets in a self-contained way. It is accessible to experts and students with interest in theoretical computer science or dynamical systems. 
650 0 |a Algorithms. 
650 0 |a Algebra. 
650 0 |a Computer programming. 
650 0 |a Computer science. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Algorithms. 
650 2 4 |a Algebra. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Mathematics of Computing. 
700 1 |a Yampolsky, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642088063 
776 0 8 |i Printed edition:  |z 9783540864172 
776 0 8 |i Printed edition:  |z 9783540685463 
830 0 |a Algorithms and Computation in Mathematics ;  |v 23 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-68547-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)