Cargando…

Applied Graph Theory in Computer Vision and Pattern Recognition

This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Kandel, Abraham (Editor ), Bunke, Horst (Editor ), Last, Mark (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Studies in Computational Intelligence, 52
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-68020-8
003 DE-He213
005 20220119094032.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540680208  |9 978-3-540-68020-8 
024 7 |a 10.1007/978-3-540-68020-8  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Applied Graph Theory in Computer Vision and Pattern Recognition  |h [electronic resource] /  |c edited by Abraham Kandel, Horst Bunke, Mark Last. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a X, 266 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 52 
505 0 |a Applied Graph Theory for Low Level Image Processing and Segmentation -- Multiresolution Image Segmentations in Graph Pyramids -- A Graphical Model Framework for Image Segmentation -- Digital Topologies on Graphs -- Graph Similarity, Matching, and Learning for High Level Computer Vision and Pattern Recognition -- How and Why Pattern Recognition and Computer Vision Applications Use Graphs -- Efficient Algorithms on Trees and Graphs with Unique Node Labels -- A Generic Graph Distance Measure Based on Multivalent Matchings -- Learning from Supervised Graphs -- Special Applications -- Graph-Based and Structural Methods for Fingerprint Classification -- Graph Sequence Visualisation and its Application to Computer Network Monitoring and Abnormal Event Detection -- Clustering of Web Documents Using Graph Representations. 
520 |a This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Kandel, Abraham.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bunke, Horst.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Last, Mark.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642087646 
776 0 8 |i Printed edition:  |z 9783540833697 
776 0 8 |i Printed edition:  |z 9783540680192 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 52 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-68020-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)