Cargando…

Concentration Inequalities and Model Selection Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003 /

Since the impressive works of Talagrand, concentration inequalities have been recognized as fundamental tools in several domains such as geometry of Banach spaces or random combinatorics. They also turn out to be essential tools to develop a non-asymptotic theory in statistics, exactly as the centra...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Massart, Pascal (Autor)
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Picard, Jean (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:École d'Été de Probabilités de Saint-Flour ; 1896
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-48503-2
003 DE-He213
005 20220113153406.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540485032  |9 978-3-540-48503-2 
024 7 |a 10.1007/978-3-540-48503-2  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Massart, Pascal.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Concentration Inequalities and Model Selection  |h [electronic resource] :  |b Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003 /  |c by Pascal Massart ; edited by Jean Picard. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XIV, 343 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a École d'Été de Probabilités de Saint-Flour ;  |v 1896 
505 0 |a Exponential and Information Inequalities -- Gaussian Processes -- Gaussian Model Selection -- Concentration Inequalities -- Maximal Inequalities -- Density Estimation via Model Selection -- Statistical Learning. 
520 |a Since the impressive works of Talagrand, concentration inequalities have been recognized as fundamental tools in several domains such as geometry of Banach spaces or random combinatorics. They also turn out to be essential tools to develop a non-asymptotic theory in statistics, exactly as the central limit theorem and large deviations are known to play a central part in the asymptotic theory. An overview of a non-asymptotic theory for model selection is given here and some selected applications to variable selection, change points detection and statistical learning are discussed. This volume reflects the content of the course given by P. Massart in St. Flour in 2003. It is mostly self-contained and accessible to graduate students. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Mathematical Applications in Computer Science. 
700 1 |a Picard, Jean.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540832379 
776 0 8 |i Printed edition:  |z 9783540484974 
830 0 |a École d'Été de Probabilités de Saint-Flour ;  |v 1896 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-48503-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)