|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-46650-5 |
003 |
DE-He213 |
005 |
20221012192358.0 |
007 |
cr nn 008mamaa |
008 |
100301s2006 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540466505
|9 978-3-540-46650-5
|
024 |
7 |
|
|a 10.1007/11894841
|2 doi
|
050 |
|
4 |
|a Q334-342
|
050 |
|
4 |
|a TA347.A78
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
072 |
|
7 |
|a UYQ
|2 thema
|
082 |
0 |
4 |
|a 006.3
|2 23
|
245 |
1 |
0 |
|a Algorithmic Learning Theory
|h [electronic resource] :
|b 17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings /
|c edited by José L. Balcázar, Philip M. Long, Frank Stephan.
|
250 |
|
|
|a 1st ed. 2006.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2006.
|
300 |
|
|
|a XIII, 393 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Artificial Intelligence,
|x 2945-9141 ;
|v 4264
|
505 |
0 |
|
|a Editors' Introduction -- Editors' Introduction -- Invited Contributions -- Solving Semi-infinite Linear Programs Using Boosting-Like Methods -- e-Science and the Semantic Web: A Symbiotic Relationship -- Spectral Norm in Learning Theory: Some Selected Topics -- Data-Driven Discovery Using Probabilistic Hidden Variable Models -- Reinforcement Learning and Apprenticeship Learning for Robotic Control -- Regular Contributions -- Learning Unions of ?(1)-Dimensional Rectangles -- On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle -- Active Learning in the Non-realizable Case -- How Many Query Superpositions Are Needed to Learn? -- Teaching Memoryless Randomized Learners Without Feedback -- The Complexity of Learning SUBSEQ (A) -- Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data -- Learning and Extending Sublanguages -- Iterative Learning from Positive Data and Negative Counterexamples -- Towards a Better Understanding of Incremental Learning -- On Exact Learning from Random Walk -- Risk-Sensitive Online Learning -- Leading Strategies in Competitive On-Line Prediction -- Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring -- General Discounting Versus Average Reward -- The Missing Consistency Theorem for Bayesian Learning: Stochastic Model Selection -- Is There an Elegant Universal Theory of Prediction? -- Learning Linearly Separable Languages -- Smooth Boosting Using an Information-Based Criterion -- Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice -- Asymptotic Learnability of Reinforcement Problems with Arbitrary Dependence -- Probabilistic Generalization of Simple Grammars and Its Application to Reinforcement Learning -- Unsupervised Slow Subspace-Learning from Stationary Processes -- Learning-Related Complexity of Linear Ranking Functions.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Computer science.
|
650 |
|
0 |
|a Algorithms.
|
650 |
|
0 |
|a Machine theory.
|
650 |
|
0 |
|a Natural language processing (Computer science).
|
650 |
1 |
4 |
|a Artificial Intelligence.
|
650 |
2 |
4 |
|a Theory of Computation.
|
650 |
2 |
4 |
|a Algorithms.
|
650 |
2 |
4 |
|a Formal Languages and Automata Theory.
|
650 |
2 |
4 |
|a Natural Language Processing (NLP).
|
700 |
1 |
|
|a Balcázar, José L.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Long, Philip M.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Stephan, Frank.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540831693
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540466499
|
830 |
|
0 |
|a Lecture Notes in Artificial Intelligence,
|x 2945-9141 ;
|v 4264
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/11894841
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
912 |
|
|
|a ZDB-2-LNC
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|