|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-46258-3 |
003 |
DE-He213 |
005 |
20220115071341.0 |
007 |
cr nn 008mamaa |
008 |
100325s2006 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540462583
|9 978-3-540-46258-3
|
024 |
7 |
|
|a 10.1007/11889762
|2 doi
|
050 |
|
4 |
|a TA1634
|
072 |
|
7 |
|a UYQV
|2 bicssc
|
072 |
|
7 |
|a COM012000
|2 bisacsh
|
072 |
|
7 |
|a UYQV
|2 thema
|
082 |
0 |
4 |
|a 006.37
|2 23
|
245 |
1 |
0 |
|a Computer Vision Approaches to Medical Image Analysis
|h [electronic resource] :
|b Second International ECCV Workshop, CVAMIA 2006, Graz, Austria, May 12, 2006, Revised Papers /
|c edited by Reinhard R. Beichel, Milan Sonka.
|
250 |
|
|
|a 1st ed. 2006.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2006.
|
300 |
|
|
|a XII, 264 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;
|v 4241
|
505 |
0 |
|
|a Clinical Applications -- Melanoma Recognition Using Representative and Discriminative Kernel Classifiers -- Detection of Connective Tissue Disorders from 3D Aortic MR Images Using Independent Component Analysis -- Comparing Ensembles of Learners: Detecting Prostate Cancer from High Resolution MRI -- Accurate Measurement of Cartilage Morphology Using a 3D Laser Scanner -- Image Registration -- Quantification of Growth and Motion Using Non-rigid Registration -- Image Registration Accuracy Estimation Without Ground Truth Using Bootstrap -- SIFT and Shape Context for Feature-Based Nonlinear Registration of Thoracic CT Images -- Consistent and Elastic Registration of Histological Sections Using Vector-Spline Regularization -- Image Segmentation and Analysis -- Comparative Analysis of Kernel Methods for Statistical Shape Learning -- Segmentation of Dynamic Emission Tomography Data in Projection Space -- A Framework for Unsupervised Segmentation of Multi-modal Medical Images -- Poster Session -- An Integrated Algorithm for MRI Brain Images Segmentation -- Spatial Intensity Correction of Fluorescent Confocal Laser Scanning Microscope Images -- Quasi-conformal Flat Representation of Triangulated Surfaces for Computerized Tomography -- Bony Structure Suppression in Chest Radiographs -- A Minimally-Interactive Watershed Algorithm Designed for Efficient CTA Bone Removal -- Automatic Reconstruction of Dendrite Morphology from Optical Section Stacks -- Modeling the Activity Pattern of the Constellation of Cardiac Chambers in Echocardiogram Videos -- A Study on the Influence of Image Dynamics and Noise on the JPEG 2000 Compression Performance for Medical Images -- Fast Segmentation of the Mitral Valve Leaflet in Echocardiography -- Three Dimensional Tissue Classifications in MR Brain Images -- 3-D Ultrasound Probe Calibration for Computer-Guided Diagnosis and Therapy.
|
520 |
|
|
|a Medical imaging and medical image analysis are developing rapidly. While m- ical imaging has already become a standard of modern medical care, medical image analysis is still mostly performed visually and qualitatively. The ev- increasing volume of acquired data makes it impossible to utilize them in full. Equally important, the visual approaches to medical image analysis are known to su?er from a lack of reproducibility. A signi?cant researche?ort is devoted to developing algorithms for processing the wealth of data available and extracting the relevant information in a computerized and quantitative fashion. Medical imaging and image analysis are interdisciplinary areas combining electrical, computer, and biomedical engineering; computer science; mathem- ics; physics; statistics; biology; medicine; and other ?elds. Medical imaging and computer vision, interestingly enough, have developed and continue developing somewhat independently. Nevertheless, bringing them together promises to b- e?t both of these ?elds. This was the second time that a satellite workshop,solely devoted to medical image analysis issues, was held in conjunction with the European Conference on Computer Vision (ECCV), and we are optimistic that this will become a tradition at ECCV. We received 38 full-length paper submissions to the second Computer Vision Approaches to Medical Image Analysis (CVAMIA) Workshop, out of which 10 were accepted for oral and 11 for poster presentation after a rigorous peer-review process. In addition, the workshop included three invited talks. The ?rst was given by Maryellen Giger from the University of Chicago, USA - titled "Multi-Modality Breast CADx".
|
650 |
|
0 |
|a Computer vision.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Pattern recognition systems.
|
650 |
|
0 |
|a Computer graphics.
|
650 |
|
0 |
|a Medical informatics.
|
650 |
|
0 |
|a Bioinformatics.
|
650 |
1 |
4 |
|a Computer Vision.
|
650 |
2 |
4 |
|a Artificial Intelligence.
|
650 |
2 |
4 |
|a Automated Pattern Recognition.
|
650 |
2 |
4 |
|a Computer Graphics.
|
650 |
2 |
4 |
|a Health Informatics.
|
650 |
2 |
4 |
|a Bioinformatics.
|
700 |
1 |
|
|a Beichel, Reinhard R.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Sonka, Milan.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540831242
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540462576
|
830 |
|
0 |
|a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;
|v 4241
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/11889762
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
912 |
|
|
|a ZDB-2-LNC
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|