Cargando…

Grammatical Inference: Algorithms and Applications 8th International Colloquium, ICGI 2006, Tokyo, Japan, September 20-22, 2006, Proceedings /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Sakaibara, Yasibumi (Editor ), Kobayashi, Satoshi (Editor ), Sato, Kengo (Editor ), Nishino, Tetsuro (Editor ), Tomita, Etsuji (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Lecture Notes in Artificial Intelligence, 4201
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-45265-2
003 DE-He213
005 20221012192433.0
007 cr nn 008mamaa
008 100323s2006 gw | s |||| 0|eng d
020 |a 9783540452652  |9 978-3-540-45265-2 
024 7 |a 10.1007/11872436  |2 doi 
050 4 |a QA76.76.C65 
072 7 |a UMC  |2 bicssc 
072 7 |a COM051010  |2 bisacsh 
072 7 |a UMC  |2 thema 
082 0 4 |a 005.45  |2 23 
245 1 0 |a Grammatical Inference: Algorithms and Applications  |h [electronic resource] :  |b 8th International Colloquium, ICGI 2006, Tokyo, Japan, September 20-22, 2006, Proceedings /  |c edited by Yasibumi Sakaibara, Satoshi Kobayashi, Kengo Sato, Tetsuro Nishino, Etsuji Tomita. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XII, 359 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 4201 
505 0 |a Invited Papers -- Parsing Without Grammar Rules -- Classification of Biological Sequences with Kernel Methods -- Regular Papers -- Identification in the Limit of Systematic-Noisy Languages -- Ten Open Problems in Grammatical Inference -- Polynomial-Time Identification of an Extension of Very Simple Grammars from Positive Data -- PAC-Learning Unambiguous NTS Languages -- Incremental Learning of Context Free Grammars by Bridging Rule Generation and Search for Semi-optimum Rule Sets -- Variational Bayesian Grammar Induction for Natural Language -- Stochastic Analysis of Lexical and Semantic Enhanced Structural Language Model -- Using Pseudo-stochastic Rational Languages in Probabilistic Grammatical Inference -- Learning Analysis by Reduction from Positive Data -- Inferring Grammars for Mildly Context Sensitive Languages in Polynomial-Time -- Planar Languages and Learnability -- A Unified Algorithm for Extending Classes of Languages Identifiable in the Limit from Positive Data -- Protein Motif Prediction by Grammatical Inference -- Grammatical Inference in Practice: A Case Study in the Biomedical Domain -- Inferring Grammar Rules of Programming Language Dialects -- The Tenjinno Machine Translation Competition -- Large Scale Inference of Deterministic Transductions: Tenjinno Problem 1 -- A Discriminative Model of Stochastic Edit Distance in the Form of a Conditional Transducer -- Learning n-Ary Node Selecting Tree Transducers from Completely Annotated Examples -- Learning Multiplicity Tree Automata -- Learning DFA from Correction and Equivalence Queries -- Using MDL for Grammar Induction -- Characteristic Sets for Inferring the Unions of the Tree Pattern Languages by the Most Fitting Hypotheses -- Learning Deterministic DEC Grammars Is Learning Rational Numbers -- Iso-array Acceptors and Learning -- Poster Papers -- A Merging States Algorithm for Inference of RFSAs -- Query-Based Learning of XPath Expressions -- Learning Finite-State Machines from Inexperienced Teachers -- Suprasymbolic Grammar Induction by Recurrent Self-Organizing Maps -- Graph-Based Structural Data Mining in Cognitive Pattern Interpretation -- Constructing Song Syntax by Automata Induction -- Learning Reversible Languages with Terminal Distinguishability -- Grammatical Inference for Syntax-Based Statistical Machine Translation. 
650 0 |a Compilers (Computer programs). 
650 0 |a Artificial intelligence. 
650 0 |a Machine theory. 
650 0 |a Computer science. 
650 1 4 |a Compilers and Interpreters. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Formal Languages and Automata Theory. 
650 2 4 |a Computer Science Logic and Foundations of Programming. 
700 1 |a Sakaibara, Yasibumi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kobayashi, Satoshi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sato, Kengo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Nishino, Tetsuro.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Tomita, Etsuji.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540830689 
776 0 8 |i Printed edition:  |z 9783540452645 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 4201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/11872436  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)