Cargando…

Knowledge Incorporation in Evolutionary Computation

This carefully edited book puts together the state-of-the-art and recent advances in knowledge incorporation in evolutionary computation within a unified framework. The book provides a comprehensive self-contained view of knowledge incorporation in evolutionary computation including a concise introd...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Jin, Yaochu (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Studies in Fuzziness and Soft Computing, 167
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-44511-1
003 DE-He213
005 20220114201134.0
007 cr nn 008mamaa
008 130423s2005 gw | s |||| 0|eng d
020 |a 9783540445111  |9 978-3-540-44511-1 
024 7 |a 10.1007/978-3-540-44511-1  |2 doi 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
245 1 0 |a Knowledge Incorporation in Evolutionary Computation  |h [electronic resource] /  |c edited by Yaochu Jin. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XIII, 550 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 167 
505 0 |a I Introduction -- A Selected Introduction to Evolutionary Computation -- II Knowledge Incorporation in Initialization, Recombination and Mutation -- The Use of Collective Memory in Genetic Programming -- A Cultural Algorithm for Solving the Job Shop Scheduling Problem -- Case-Initialized Genetic Algorithms for Knowledge Extraction and Incorporation -- Using Cultural Algorithms to Evolve Strategies in A Complex Agent-based System -- Methods for Using Surrogate Models to Speed Up Genetic Algorithm Optimization: Informed Operators and Genetic Engineering -- Fuzzy Knowledge Incorporation in Crossover and Mutation -- III Knowledge Incorporation in Selection and Reproduction -- Learning Probabilistic Models for Enhanced Evolutionary Computation -- Probabilistic Models for Linkage Learning in Forest Management -- Performance-Based Computation of Chromosome Lifetimes in Genetic Algorithms -- Genetic Algorithm and Case-Based Reasoning Applied in Production Scheduling -- Knowledge-Based Evolutionary Search for Inductive Concept Learning -- An Evolutionary Algorithm with Tabu Restriction and Heuristic Reasoning for Multiobjective Optimization -- IV Knowledge Incorporation in Fitness Evaluations -- Neural Networks for Fitness Approximation in Evolutionary Optimization -- Surrogate-Assisted Evolutionary Optimization Frameworks for High-Fidelity Engineering Design Problems -- Model Assisted Evolution Strategies -- V Knowledge Incorporation through Life-time Learning and Human-Computer Interactions -- Knowledge Incorporation Through Lifetime Learning -- Local Search Direction for Multi-Objective Optimization Using Memetic EMO Algorithms -- Fashion Design Using Interactive Genetic Algorithm with Knowledge-based Encoding -- Interactive Evolutionary Design -- VI Preference Incorporation in Multi-objective Evolutionary Computation -- Integrating User Preferences into Evolutionary Multi-Objective Optimization -- Human Preferences and their Applications in Evolutionary Multi-Objective Optimization -- An Interactive Fuzzy Satisficing Method for Multi-objective Integer Programming Problems through Genetic Algorithms -- Interactive Preference Incorporation in Evolutionary Engineering Design. 
520 |a This carefully edited book puts together the state-of-the-art and recent advances in knowledge incorporation in evolutionary computation within a unified framework. The book provides a comprehensive self-contained view of knowledge incorporation in evolutionary computation including a concise introduction to evolutionary algorithms as well as knowledge representation methods. "Knowledge Incorporation in Evolutionary Computation" is a valuable reference for researchers, students and professionals from engineering and computer science, in particular in the areas of artificial intelligence, soft computing, natural computing, and evolutionary computation. 
650 0 |a Mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Applications of Mathematics. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Jin, Yaochu.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642061745 
776 0 8 |i Printed edition:  |z 9783540229025 
776 0 8 |i Printed edition:  |z 9783642535970 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 167 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-44511-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)