Cargando…

Topological Invariants of Stratified Spaces

The central theme of this book is the restoration of Poincaré duality on stratified singular spaces by using Verdier-self-dual sheaves such as the prototypical intersection chain sheaf on a complex variety. After carefully introducing sheaf theory, derived categories, Verdier duality, stratificatio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Banagl, Markus (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-38587-5
003 DE-He213
005 20220115082107.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540385875  |9 978-3-540-38587-5 
024 7 |a 10.1007/3-540-38587-8  |2 doi 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBP  |2 thema 
082 0 4 |a 514  |2 23 
100 1 |a Banagl, Markus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Topological Invariants of Stratified Spaces  |h [electronic resource] /  |c by Markus Banagl. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XII, 264 p. 14 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Elementary Sheaf Theory -- Homological Algebra -- Verdier Duality -- Intersection Homology -- Characteristic Classes and Smooth Manifolds -- Invariants of Witt Spaces -- T-Structures -- Methods of Computation -- Invariants of Non-Witt Spaces -- L2 Cohomology. 
520 |a The central theme of this book is the restoration of Poincaré duality on stratified singular spaces by using Verdier-self-dual sheaves such as the prototypical intersection chain sheaf on a complex variety. After carefully introducing sheaf theory, derived categories, Verdier duality, stratification theories, intersection homology, t-structures and perverse sheaves, the ultimate objective is to explain the construction as well as algebraic and geometric properties of invariants such as the signature and characteristic classes effectuated by self-dual sheaves. Highlights never before presented in book form include complete and very detailed proofs of decomposition theorems for self-dual sheaves, explanation of methods for computing twisted characteristic classes and an introduction to the author's theory of non-Witt spaces and Lagrangian structures. 
650 0 |a Topology. 
650 0 |a Geometry, Differential. 
650 0 |a Algebraic topology. 
650 1 4 |a Topology. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642072482 
776 0 8 |i Printed edition:  |z 9783540828532 
776 0 8 |i Printed edition:  |z 9783540385851 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-38587-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)