Cargando…

Stochastic Geometry Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13-18, 2004 /

Stochastic Geometry is the mathematical discipline which studies mathematical models for random geometric structures, as they appear frequently in almost all natural sciences or technical fields. Although its roots can be traced back to the 18th century (the Buffon needle problem), the modern theory...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Baddeley, A. (Autor), Bárány, I. (Autor), Schneider, R. (Autor), Weil, W. (Autor, Editor )
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:C.I.M.E. Foundation Subseries ; 1892
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-38175-4
003 DE-He213
005 20220116215931.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540381754  |9 978-3-540-38175-4 
024 7 |a 10.1007/3-540-38174-0  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Baddeley, A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stochastic Geometry  |h [electronic resource] :  |b Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13-18, 2004 /  |c by A. Baddeley, I. Bárány, R. Schneider, W. Weil ; edited by W. Weil. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XII, 292 p. 36 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a C.I.M.E. Foundation Subseries ;  |v 1892 
505 0 |a Spatial Point Processes and their Applications -- Random Polytopes, Convex Bodies, and Approximation -- Integral Geometric Tools for Stochastic Geometry -- Random Sets (in Particular Boolean Models) -- Random Mosaics -- On the Evolution Equations of Mean Geometric Densities for a Class of Space and Time Inhomogeneous Stochastic Birth-and-growth Processes. 
520 |a Stochastic Geometry is the mathematical discipline which studies mathematical models for random geometric structures, as they appear frequently in almost all natural sciences or technical fields. Although its roots can be traced back to the 18th century (the Buffon needle problem), the modern theory of random sets was founded by D. Kendall and G. Matheron in the early 1970's. Its rapid development was influenced by applications in Spatial Statistics and by its close connections to Integral Geometry. The volume "Stochastic Geometry" contains the lectures given at the CIME summer school in Martina Franca in September 1974. The four main lecturers covered the areas of Spatial Statistics, Random Points, Integral Geometry and Random Sets, they are complemented by two additional contributions on Random Mosaics and Crystallization Processes. The book presents an up-to-date description of important parts of Stochastic Geometry. 
650 0 |a Probabilities. 
650 0 |a Convex geometry . 
650 0 |a Discrete geometry. 
650 0 |a Geometry, Differential. 
650 1 4 |a Probability Theory. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Differential Geometry. 
700 1 |a Bárány, I.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Schneider, R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Weil, W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Weil, W.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540828372 
776 0 8 |i Printed edition:  |z 9783540381747 
830 0 |a C.I.M.E. Foundation Subseries ;  |v 1892 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-38174-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)