|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-37952-2 |
003 |
DE-He213 |
005 |
20221012204203.0 |
007 |
cr nn 008mamaa |
008 |
100301s2006 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540379522
|9 978-3-540-37952-2
|
024 |
7 |
|
|a 10.1007/11829898
|2 doi
|
050 |
|
4 |
|a Q334-342
|
050 |
|
4 |
|a TA347.A78
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
072 |
|
7 |
|a UYQ
|2 thema
|
082 |
0 |
4 |
|a 006.3
|2 23
|
245 |
1 |
0 |
|a Artificial Neural Networks in Pattern Recognition
|h [electronic resource] :
|b Second IAPR Workshop, ANNPR 2006, Ulm, Germany, August 31-September 2, 2006, Proceedings /
|c edited by Friedhelm Schwenker, Simone Marinai.
|
250 |
|
|
|a 1st ed. 2006.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2006.
|
300 |
|
|
|a X, 302 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Artificial Intelligence,
|x 2945-9141 ;
|v 4087
|
505 |
0 |
|
|a Unsupervised Learning -- Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions -- Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition -- Adaptive Feedback Inhibition Improves Pattern Discrimination Learning -- Semi-supervised Learning -- Supervised Batch Neural Gas -- Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes -- On the Effects of Constraints in Semi-supervised Hierarchical Clustering -- A Study of the Robustness of KNN Classifiers Trained Using Soft Labels -- Supervised Learning -- An Experimental Study on Training Radial Basis Functions by Gradient Descent -- A Local Tangent Space Alignment Based Transductive Classification Algorithm -- Incremental Manifold Learning Via Tangent Space Alignment -- A Convolutional Neural Network Tolerant of Synaptic Faults for Low-Power Analog Hardware -- Ammonium Estimation in a Biological Wastewater Plant Using Feedforward Neural Networks -- Support Vector Learning -- Support Vector Regression Using Mahalanobis Kernels -- Incremental Training of Support Vector Machines Using Truncated Hypercones -- Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques -- Multiple Classifier Systems -- Multiple Classifier Systems for Embedded String Patterns -- Multiple Neural Networks for Facial Feature Localization in Orientation-Free Face Images -- Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theory -- Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalization -- Visual Object Recognition -- Object Detection and Feature Base Learning with Sparse Convolutional Neural Networks -- Visual Classification of Images by Learning Geometric Appearances Through Boosting -- An Eye Detection System Based on Neural Autoassociators -- Orientation Histograms for Face Recognition -- Data Mining in Bioinformatics -- An Empirical Comparison of Feature Reduction Methods in the Context of Microarray Data Classification -- Unsupervised Feature Selection for Biomarker Identification in Chromatography and Gene Expression Data -- Learning and Feature Selection Using the Set Covering Machine with Data-Dependent Rays on Gene Expression Profiles.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Pattern recognition systems.
|
650 |
|
0 |
|a Application software.
|
650 |
|
0 |
|a Computer science.
|
650 |
|
0 |
|a Electronic data processing-Management.
|
650 |
|
0 |
|a Bioinformatics.
|
650 |
1 |
4 |
|a Artificial Intelligence.
|
650 |
2 |
4 |
|a Automated Pattern Recognition.
|
650 |
2 |
4 |
|a Computer and Information Systems Applications.
|
650 |
2 |
4 |
|a Theory of Computation.
|
650 |
2 |
4 |
|a IT Operations.
|
650 |
2 |
4 |
|a Bioinformatics.
|
700 |
1 |
|
|a Schwenker, Friedhelm.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Marinai, Simone.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540828280
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540379515
|
830 |
|
0 |
|a Lecture Notes in Artificial Intelligence,
|x 2945-9141 ;
|v 4087
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/11829898
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
912 |
|
|
|a ZDB-2-LNC
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|