Cargando…

Artificial Neural Networks in Pattern Recognition Second IAPR Workshop, ANNPR 2006, Ulm, Germany, August 31-September 2, 2006, Proceedings /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Schwenker, Friedhelm (Editor ), Marinai, Simone (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Lecture Notes in Artificial Intelligence, 4087
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-37952-2
003 DE-He213
005 20221012204203.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540379522  |9 978-3-540-37952-2 
024 7 |a 10.1007/11829898  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Artificial Neural Networks in Pattern Recognition  |h [electronic resource] :  |b Second IAPR Workshop, ANNPR 2006, Ulm, Germany, August 31-September 2, 2006, Proceedings /  |c edited by Friedhelm Schwenker, Simone Marinai. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a X, 302 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 4087 
505 0 |a Unsupervised Learning -- Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions -- Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition -- Adaptive Feedback Inhibition Improves Pattern Discrimination Learning -- Semi-supervised Learning -- Supervised Batch Neural Gas -- Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes -- On the Effects of Constraints in Semi-supervised Hierarchical Clustering -- A Study of the Robustness of KNN Classifiers Trained Using Soft Labels -- Supervised Learning -- An Experimental Study on Training Radial Basis Functions by Gradient Descent -- A Local Tangent Space Alignment Based Transductive Classification Algorithm -- Incremental Manifold Learning Via Tangent Space Alignment -- A Convolutional Neural Network Tolerant of Synaptic Faults for Low-Power Analog Hardware -- Ammonium Estimation in a Biological Wastewater Plant Using Feedforward Neural Networks -- Support Vector Learning -- Support Vector Regression Using Mahalanobis Kernels -- Incremental Training of Support Vector Machines Using Truncated Hypercones -- Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques -- Multiple Classifier Systems -- Multiple Classifier Systems for Embedded String Patterns -- Multiple Neural Networks for Facial Feature Localization in Orientation-Free Face Images -- Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theory -- Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalization -- Visual Object Recognition -- Object Detection and Feature Base Learning with Sparse Convolutional Neural Networks -- Visual Classification of Images by Learning Geometric Appearances Through Boosting -- An Eye Detection System Based on Neural Autoassociators -- Orientation Histograms for Face Recognition -- Data Mining in Bioinformatics -- An Empirical Comparison of Feature Reduction Methods in the Context of Microarray Data Classification -- Unsupervised Feature Selection for Biomarker Identification in Chromatography and Gene Expression Data -- Learning and Feature Selection Using the Set Covering Machine with Data-Dependent Rays on Gene Expression Profiles. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition systems. 
650 0 |a Application software. 
650 0 |a Computer science. 
650 0 |a Electronic data processing-Management. 
650 0 |a Bioinformatics. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Theory of Computation. 
650 2 4 |a IT Operations. 
650 2 4 |a Bioinformatics. 
700 1 |a Schwenker, Friedhelm.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Marinai, Simone.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540828280 
776 0 8 |i Printed edition:  |z 9783540379515 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 4087 
856 4 0 |u https://doi.uam.elogim.com/10.1007/11829898  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)