Cargando…

Web Data Mining Exploring Hyperlinks, Contents, and Usage Data /

The rapid growth of the Web in the last decade makes it the largest p- licly accessible data source in the world. Web mining aims to discover u- ful information or knowledge from Web hyperlinks, page contents, and - age logs. Based on the primary kinds of data used in the mining process, Web mining...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liu, Bing (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Data-Centric Systems and Applications,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-37882-2
003 DE-He213
005 20220113083451.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540378822  |9 978-3-540-37882-2 
024 7 |a 10.1007/978-3-540-37882-2  |2 doi 
050 4 |a QA76.9.D35 
050 4 |a Q350-390 
072 7 |a UMB  |2 bicssc 
072 7 |a GPF  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a UMB  |2 thema 
072 7 |a GPF  |2 thema 
082 0 4 |a 005.73  |2 23 
082 0 4 |a 003.54  |2 23 
100 1 |a Liu, Bing.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Web Data Mining  |h [electronic resource] :  |b Exploring Hyperlinks, Contents, and Usage Data /  |c by Bing Liu. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XX, 532 p. 177 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Data-Centric Systems and Applications,  |x 2197-974X 
505 0 |a Data Mining Foundations -- Association Rules and Sequential Patterns -- Supervised Learning -- Unsupervised Learning -- Partially Supervised Learning -- Web Mining -- Information Retrieval and Web Search -- Link Analysis -- Web Crawling -- Structured Data Extraction: Wrapper Generation -- Information Integration -- Opinion Mining -- Web Usage Mining. 
520 |a The rapid growth of the Web in the last decade makes it the largest p- licly accessible data source in the world. Web mining aims to discover u- ful information or knowledge from Web hyperlinks, page contents, and - age logs. Based on the primary kinds of data used in the mining process, Web mining tasks can be categorized into three main types: Web structure mining, Web content mining and Web usage mining. Web structure m- ing discovers knowledge from hyperlinks, which represent the structure of the Web. Web content mining extracts useful information/knowledge from Web page contents. Web usage mining mines user access patterns from usage logs, which record clicks made by every user. The goal of this book is to present these tasks, and their core mining - gorithms. The book is intended to be a text with a comprehensive cov- age, and yet, for each topic, sufficient details are given so that readers can gain a reasonably complete knowledge of its algorithms or techniques without referring to any external materials. Four of the chapters, structured data extraction, information integration, opinion mining, and Web usage mining, make this book unique. These topics are not covered by existing books, but yet they are essential to Web data mining. Traditional Web mining topics such as search, crawling and resource discovery, and link analysis are also covered in detail in this book. 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Statistics . 
650 0 |a Data mining. 
650 0 |a Pattern recognition systems. 
650 0 |a Artificial intelligence. 
650 1 4 |a Data Structures and Information Theory. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540828228 
776 0 8 |i Printed edition:  |z 9783642072376 
776 0 8 |i Printed edition:  |z 9783540378815 
830 0 |a Data-Centric Systems and Applications,  |x 2197-974X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-37882-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)