Cargando…

Points fixes, zéros et la méthode de Newton

Cet ouvrage est consacré aux points fixes d'applications différentiables, aux zéros de systèmes non-linéaires et à la méthode de Newton. Il s'adresse à des étudiants de mastère ou préparant l'agrégation de mathématique et à des chercheurs confirmés. La première partie...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dedieu, Jean-Pierre (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Francés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Mathématiques et Applications, 54
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:Cet ouvrage est consacré aux points fixes d'applications différentiables, aux zéros de systèmes non-linéaires et à la méthode de Newton. Il s'adresse à des étudiants de mastère ou préparant l'agrégation de mathématique et à des chercheurs confirmés. La première partie est consacrée à la méthode des approximations successives et confronte un point de vue «systèmes dynamiques» (théorèmes de Grobman-Hartman, de la variété stable) à des exemples issus de l'analyse numérique. La seconde partie de cet ouvrage expose la méthode de Newton et ses développements les plus récents (théorie alpha de Smale, systèmes sous ou sur-déterminés). Elle présente une nouvelle approche de ce sujet et un ensemble de résultats originaux publiés pour la première fois dans un ouvrage de langue française. This is an advanced text on fixed points, zeros of nonlinear systems and the Newton method. Its first part, devoted to fixed points, includes the Grobman-Hartman and the stable manifold theorems. The second part describes the Newton method from a modern point of view: Smale's alpha theory, underdetermined and overdetermined systems of equations. These results are illustrated by various examples from numerical analysis.
Descripción Física:XII, 196 p. 7 ill. online resource.
ISBN:9783540376606
ISSN:2198-3275 ;