Cargando…

Artificial Neural Networks in Vehicular Pollution Modelling

Artificial neural networks (ANNs), which are parallel computational models, comprising of interconnected adaptive processing units (neurons) have the capability to predict accurately the dispersive behavior of vehicular pollutants under complex environmental conditions. This book aims at describing...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Khare, Mukesh (Autor), Nagendra, S.M. Shiva (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Studies in Computational Intelligence, 41
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-37418-3
003 DE-He213
005 20220116185311.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540374183  |9 978-3-540-37418-3 
024 7 |a 10.1007/978-3-540-37418-3  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
100 1 |a Khare, Mukesh.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Artificial Neural Networks in Vehicular Pollution Modelling  |h [electronic resource] /  |c by Mukesh Khare, S.M. Shiva Nagendra. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XVI, 242 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 41 
505 0 |a Vehicular Pollution -- Artificial Neutral Networks -- Vehicular Pollution Modelling-Conventional Aproach -- Vehicular Pollution Modelling -ANN Aproach -- Aplication of ANN based Vehicular Pollution Models -- Epilogue. 
520 |a Artificial neural networks (ANNs), which are parallel computational models, comprising of interconnected adaptive processing units (neurons) have the capability to predict accurately the dispersive behavior of vehicular pollutants under complex environmental conditions. This book aims at describing step-by-step procedure for formulation and development of ANN based VP models considering meteorological and traffic parameters. The model predictions are compared with existing line source deterministic/statistical based models to establish the efficacy of the ANN technique in explaining frequent dispersion complexities in urban areas. The book is very useful for hardcore professionals and researchers working in problems associated with urban air pollution management and control. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Automotive engineering. 
650 0 |a Pollution. 
650 0 |a Mathematics. 
650 0 |a Computational intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Automotive Engineering. 
650 2 4 |a Pollution. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Computational Intelligence. 
700 1 |a Nagendra, S.M. Shiva.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642072222 
776 0 8 |i Printed edition:  |z 9783540827849 
776 0 8 |i Printed edition:  |z 9783540374176 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 41 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-37418-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)