Cargando…

Analytic Number Theory Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 11-18, 2002 /

The four contributions collected in this volume deal with several advanced results in analytic number theory. Friedlander's paper contains some recent achievements of sieve theory leading to asymptotic formulae for the number of primes represented by suitable polynomials. Heath-Brown's lec...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Friedlander, J. B. (Autor), Heath-Brown, D.R (Autor), Iwaniec, H. (Autor), Kaczorowski, J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Perelli, A. (Editor ), Viola, C. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:C.I.M.E. Foundation Subseries ; 1891
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-36364-4
003 DE-He213
005 20220118175609.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540363644  |9 978-3-540-36364-4 
024 7 |a 10.1007/3-540-36363-7  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Friedlander, J. B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analytic Number Theory  |h [electronic resource] :  |b Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 11-18, 2002 /  |c by J. B. Friedlander, D.R. Heath-Brown, H. Iwaniec, J. Kaczorowski ; edited by A. Perelli, C. Viola. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XI, 217 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a C.I.M.E. Foundation Subseries ;  |v 1891 
505 0 |a Producing Prime Numbers via Sieve Methods -- Counting Rational Points on Algebraic Varieties -- Conversations on the Exceptional Character -- Axiomatic Theory of L-Functions: the Selberg Class. 
520 |a The four contributions collected in this volume deal with several advanced results in analytic number theory. Friedlander's paper contains some recent achievements of sieve theory leading to asymptotic formulae for the number of primes represented by suitable polynomials. Heath-Brown's lecture notes mainly deal with counting integer solutions to Diophantine equations, using among other tools several results from algebraic geometry and from the geometry of numbers. Iwaniec's paper gives a broad picture of the theory of Siegel's zeros and of exceptional characters of L-functions, and gives a new proof of Linnik's theorem on the least prime in an arithmetic progression. Kaczorowski's article presents an up-to-date survey of the axiomatic theory of L-functions introduced by Selberg, with a detailed exposition of several recent results. 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 1 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Heath-Brown, D.R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Iwaniec, H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kaczorowski, J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Perelli, A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Viola, C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540826699 
776 0 8 |i Printed edition:  |z 9783540363637 
830 0 |a C.I.M.E. Foundation Subseries ;  |v 1891 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-36363-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)