Cargando…

Projective and Cayley-Klein Geometries

Projective geometry, and the Cayley-Klein geometries embedded into it, were originated in the 19th century. It is one of the foundations of algebraic geometry and has many applications to differential geometry. The book presents a systematic introduction to projective geometry as based on the notion...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Onishchik, Arkadij L. (Autor), Sulanke, Rolf (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-35645-5
003 DE-He213
005 20220114162013.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540356455  |9 978-3-540-35645-5 
024 7 |a 10.1007/3-540-35645-2  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Onishchik, Arkadij L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Projective and Cayley-Klein Geometries  |h [electronic resource] /  |c by Arkadij L. Onishchik, Rolf Sulanke. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XVI, 434 p. 69 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
520 |a Projective geometry, and the Cayley-Klein geometries embedded into it, were originated in the 19th century. It is one of the foundations of algebraic geometry and has many applications to differential geometry. The book presents a systematic introduction to projective geometry as based on the notion of vector space, which is the central topic of the first chapter. The second chapter covers the most important classical geometries which are systematically developed following the principle founded by Cayley and Klein, which rely on distinguishing an absolute and then studying the resulting invariants of geometric objects. An appendix collects brief accounts of some fundamental notions from algebra and topology with corresponding references to the literature. This self-contained introduction is a must for students, lecturers and researchers interested in projective geometry. . 
650 0 |a Geometry. 
650 1 4 |a Geometry. 
700 1 |a Sulanke, Rolf.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540826002 
776 0 8 |i Printed edition:  |z 9783642071348 
776 0 8 |i Printed edition:  |z 9783540356448 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-35645-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)