Cargando…

Transseries and Real Differential Algebra

Transseries are formal objects constructed from an infinitely large variable x and the reals using infinite summation, exponentiation and logarithm. They are suitable for modeling "strongly monotonic" or "tame" asymptotic solutions to differential equations and find their origin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: van der Hoeven, Joris (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Lecture Notes in Mathematics, 1888
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-35591-5
003 DE-He213
005 20220116014621.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540355915  |9 978-3-540-35591-5 
024 7 |a 10.1007/3-540-35590-1  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a van der Hoeven, Joris.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Transseries and Real Differential Algebra  |h [electronic resource] /  |c by Joris van der Hoeven. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XII, 260 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1888 
505 0 |a Orderings -- Grid-based series -- The Newton polygon method -- Transseries -- Operations on transseries -- Grid-based operators -- Linear differential equations -- Algebraic differential equations -- The intermediate value theorem. 
520 |a Transseries are formal objects constructed from an infinitely large variable x and the reals using infinite summation, exponentiation and logarithm. They are suitable for modeling "strongly monotonic" or "tame" asymptotic solutions to differential equations and find their origin in at least three different areas of mathematics: analysis, model theory and computer algebra. They play a crucial role in Écalle's proof of Dulac's conjecture, which is closely related to Hilbert's 16th problem. The aim of the present book is to give a detailed and self-contained exposition of the theory of transseries, in the hope of making it more accessible to non-specialists. 
650 0 |a Algebraic geometry. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Dynamical systems. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540825890 
776 0 8 |i Printed edition:  |z 9783540355908 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1888 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-35590-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)