The Lace Expansion and its Applications Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /
The lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, p...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2006.
|
Edición: | 1st ed. 2006. |
Colección: | École d'Été de Probabilités de Saint-Flour ;
1879 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Simple Random Walk
- The Self-Avoiding Walk
- The Lace Expansion for the Self-Avoiding Walk
- Diagrammatic Estimates for the Self-Avoiding Walk
- Convergence for the Self-Avoiding Walk
- Further Results for the Self-Avoiding Walk
- Lattice Trees
- The Lace Expansion for Lattice Trees
- Percolation
- The Expansion for Percolation
- Results for Percolation
- Oriented Percolation
- Expansions for Oriented Percolation
- The Contact Process
- Branching Random Walk
- Integrated Super-Brownian Excursion
- Super-Brownian Motion.