|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-35518-2 |
003 |
DE-He213 |
005 |
20220117192942.0 |
007 |
cr nn 008mamaa |
008 |
100301s2006 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540355182
|9 978-3-540-35518-2
|
024 |
7 |
|
|a 10.1007/b128444
|2 doi
|
050 |
|
4 |
|a QA273.A1-274.9
|
072 |
|
7 |
|a PBT
|2 bicssc
|
072 |
|
7 |
|a PBWL
|2 bicssc
|
072 |
|
7 |
|a MAT029000
|2 bisacsh
|
072 |
|
7 |
|a PBT
|2 thema
|
072 |
|
7 |
|a PBWL
|2 thema
|
082 |
0 |
4 |
|a 519.2
|2 23
|
100 |
1 |
|
|a Slade, Gordon.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
4 |
|a The Lace Expansion and its Applications
|h [electronic resource] :
|b Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /
|c by Gordon Slade ; edited by Jean Picard.
|
250 |
|
|
|a 1st ed. 2006.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2006.
|
300 |
|
|
|a XIII, 233 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a École d'Été de Probabilités de Saint-Flour ;
|v 1879
|
505 |
0 |
|
|a Simple Random Walk -- The Self-Avoiding Walk -- The Lace Expansion for the Self-Avoiding Walk -- Diagrammatic Estimates for the Self-Avoiding Walk -- Convergence for the Self-Avoiding Walk -- Further Results for the Self-Avoiding Walk -- Lattice Trees -- The Lace Expansion for Lattice Trees -- Percolation -- The Expansion for Percolation -- Results for Percolation -- Oriented Percolation -- Expansions for Oriented Percolation -- The Contact Process -- Branching Random Walk -- Integrated Super-Brownian Excursion -- Super-Brownian Motion.
|
520 |
|
|
|a The lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, percolation, oriented percolation, and the contact process. This volume provides a unified and extensive overview of the lace expansion and its applications to these models. Results include proofs of existence of critical exponents and construction of scaling limits. Often, the scaling limit is described in terms of super-Brownian motion.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
|
0 |
|a Discrete mathematics.
|
650 |
1 |
4 |
|a Probability Theory.
|
650 |
2 |
4 |
|a Theoretical, Mathematical and Computational Physics.
|
650 |
2 |
4 |
|a Discrete Mathematics.
|
700 |
1 |
|
|a Picard, Jean.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540819516
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540311898
|
830 |
|
0 |
|a École d'Été de Probabilités de Saint-Flour ;
|v 1879
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/b128444
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|