Cargando…

The Lace Expansion and its Applications Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /

The lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Slade, Gordon (Autor)
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Picard, Jean (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:École d'Été de Probabilités de Saint-Flour ; 1879
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-35518-2
003 DE-He213
005 20220117192942.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540355182  |9 978-3-540-35518-2 
024 7 |a 10.1007/b128444  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Slade, Gordon.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Lace Expansion and its Applications  |h [electronic resource] :  |b Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /  |c by Gordon Slade ; edited by Jean Picard. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XIII, 233 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a École d'Été de Probabilités de Saint-Flour ;  |v 1879 
505 0 |a Simple Random Walk -- The Self-Avoiding Walk -- The Lace Expansion for the Self-Avoiding Walk -- Diagrammatic Estimates for the Self-Avoiding Walk -- Convergence for the Self-Avoiding Walk -- Further Results for the Self-Avoiding Walk -- Lattice Trees -- The Lace Expansion for Lattice Trees -- Percolation -- The Expansion for Percolation -- Results for Percolation -- Oriented Percolation -- Expansions for Oriented Percolation -- The Contact Process -- Branching Random Walk -- Integrated Super-Brownian Excursion -- Super-Brownian Motion. 
520 |a The lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, percolation, oriented percolation, and the contact process. This volume provides a unified and extensive overview of the lace expansion and its applications to these models. Results include proofs of existence of critical exponents and construction of scaling limits. Often, the scaling limit is described in terms of super-Brownian motion. 
650 0 |a Probabilities. 
650 0 |a Mathematical physics. 
650 0 |a Discrete mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Discrete Mathematics. 
700 1 |a Picard, Jean.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540819516 
776 0 8 |i Printed edition:  |z 9783540311898 
830 0 |a École d'Été de Probabilités de Saint-Flour ;  |v 1879 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b128444  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)