Cargando…

Learning Theory 19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006, Proceedings /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Simon, Hans Ulrich (Editor ), Lugosi, Gábor (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Lecture Notes in Artificial Intelligence, 4005
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-35296-9
003 DE-He213
005 20221012202555.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540352969  |9 978-3-540-35296-9 
024 7 |a 10.1007/11776420  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Learning Theory  |h [electronic resource] :  |b 19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006, Proceedings /  |c edited by Hans Ulrich Simon, Gábor Lugosi. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XII, 660 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 4005 
505 0 |a Invited Presentations -- Random Multivariate Search Trees -- On Learning and Logic -- Predictions as Statements and Decisions -- Clustering, Un-, and Semisupervised Learning -- A Sober Look at Clustering Stability -- PAC Learning Axis-Aligned Mixtures of Gaussians with No Separation Assumption -- Stable Transductive Learning -- Uniform Convergence of Adaptive Graph-Based Regularization -- Statistical Learning Theory -- The Rademacher Complexity of Linear Transformation Classes -- Function Classes That Approximate the Bayes Risk -- Functional Classification with Margin Conditions -- Significance and Recovery of Block Structures in Binary Matrices with Noise -- Regularized Learning and Kernel Methods -- Maximum Entropy Distribution Estimation with Generalized Regularization -- Unifying Divergence Minimization and Statistical Inference Via Convex Duality -- Mercer's Theorem, Feature Maps, and Smoothing -- Learning Bounds for Support Vector Machines with Learned Kernels -- Query Learning and Teaching -- On Optimal Learning Algorithms for Multiplicity Automata -- Exact Learning Composed Classes with a Small Number of Mistakes -- DNF Are Teachable in the Average Case -- Teaching Randomized Learners -- Inductive Inference -- Memory-Limited U-Shaped Learning -- On Learning Languages from Positive Data and a Limited Number of Short Counterexamples -- Learning Rational Stochastic Languages -- Parent Assignment Is Hard for the MDL, AIC, and NML Costs -- Learning Algorithms and Limitations on Learning -- Uniform-Distribution Learnability of Noisy Linear Threshold Functions with Restricted Focus of Attention -- Discriminative Learning Can Succeed Where Generative Learning Fails -- Improved Lower Bounds for Learning Intersections of Halfspaces -- Efficient Learning Algorithms Yield Circuit Lower Bounds -- Online Aggregation -- Optimal Oracle Inequality for Aggregation of Classifiers Under Low Noise Condition -- Aggregation and Sparsity Via ?1 Penalized Least Squares -- A Randomized Online Learning Algorithm for Better Variance Control -- Online Prediction and Reinforcement Learning I -- Online Learning with Variable Stage Duration -- Online Learning Meets Optimization in the Dual -- Online Tracking of Linear Subspaces -- Online Multitask Learning -- Online Prediction and Reinforcement Learning II -- The Shortest Path Problem Under Partial Monitoring -- Tracking the Best Hyperplane with a Simple Budget Perceptron -- Logarithmic Regret Algorithms for Online Convex Optimization -- Online Variance Minimization -- Online Prediction and Reinforcement Learning III -- Online Learning with Constraints -- Continuous Experts and the Binning Algorithm -- Competing with Wild Prediction Rules -- Learning Near-Optimal Policies with Bellman-Residual Minimization Based Fitted Policy Iteration and a Single Sample Path -- Other Approaches -- Ranking with a P-Norm Push -- Subset Ranking Using Regression -- Active Sampling for Multiple Output Identification -- Improving Random Projections Using Marginal Information -- Open Problems -- Efficient Algorithms for General Active Learning -- Can Entropic Regularization Be Replaced by Squared Euclidean Distance Plus Additional Linear Constraints. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Machine theory. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Algorithms. 
650 2 4 |a Formal Languages and Automata Theory. 
700 1 |a Simon, Hans Ulrich.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Lugosi, Gábor.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540825562 
776 0 8 |i Printed edition:  |z 9783540352945 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 4005 
856 4 0 |u https://doi.uam.elogim.com/10.1007/11776420  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)