Cargando…

The Wulff Crystal in Ising and Percolation Models Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /

This volume is a synopsis of recent works aiming at a mathematically rigorous justification of the phase coexistence phenomenon, starting from a microscopic model. It is intended to be self-contained. Those proofs that can be found only in research papers have been included, whereas results for whic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cerf, Raphaël (Autor)
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Picard, Jean (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:École d'Été de Probabilités de Saint-Flour ; 1878
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-34806-1
003 DE-He213
005 20220117200005.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540348061  |9 978-3-540-34806-1 
024 7 |a 10.1007/b128410  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Cerf, Raphaël.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Wulff Crystal in Ising and Percolation Models  |h [electronic resource] :  |b Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /  |c by Raphaël Cerf ; edited by Jean Picard. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XIV, 264 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a École d'Été de Probabilités de Saint-Flour ;  |v 1878 
505 0 |a Phase coexistence and subadditivity -- Presentation of the models -- Ising model -- Bernoulli percolation -- FK or random cluster model -- Main results -- The Wulff crystal -- Large deviation principles -- Large deviation theory -- Surface large deviation principles -- Volume large deviations -- Fundamental probabilistic estimates -- Coarse graining -- Decoupling -- Surface tension -- Interface estimate -- Basic geometric tools -- Sets of finite perimeter -- Surface energy -- The Wulff theorem -- Final steps of the proofs -- LDP for the cluster shapes -- Enhanced upper bound -- LDP for FK percolation -- LDP for Ising. 
520 |a This volume is a synopsis of recent works aiming at a mathematically rigorous justification of the phase coexistence phenomenon, starting from a microscopic model. It is intended to be self-contained. Those proofs that can be found only in research papers have been included, whereas results for which the proofs can be found in classical textbooks are only quoted. 
650 0 |a Probabilities. 
650 0 |a Mathematical physics. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 1 4 |a Probability Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Calculus of Variations and Optimization. 
700 1 |a Picard, Jean.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540819059 
776 0 8 |i Printed edition:  |z 9783540309888 
830 0 |a École d'Été de Probabilités de Saint-Flour ;  |v 1878 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b128410  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)