Cargando…

Quantum Field Theory I: Basics in Mathematics and Physics A Bridge between Mathematicians and Physicists /

This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zeidler, Eberhard (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-34764-4
003 DE-He213
005 20220116152124.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540347644  |9 978-3-540-34764-4 
024 7 |a 10.1007/978-3-540-34764-4  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a Zeidler, Eberhard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantum Field Theory I: Basics in Mathematics and Physics  |h [electronic resource] :  |b A Bridge between Mathematicians and Physicists /  |c by Eberhard Zeidler. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XXIV, 1051 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Prologue -- Historical Introduction -- Phenomenology of the Standard Model for Elementary Particles -- The Challenge of Different Scales in Nature -- Basic Techniques in Mathematics -- Analyticity -- A Glance at Topology -- Many-Particle Systems in Mathematics and Physics -- Rigorous Finite-Dimensional Magic Formulas of Quantum Field Theory -- Rigorous Finite-Dimensional Perturbation Theory -- Fermions and the Calculus for Grassmann Variables -- Infinite-Dimensional Hilbert Spaces -- Distributions and Green's Functions -- Distributions and Physics -- Heuristic Magic Formulas of Quantum Field Theory -- Basic Strategies in Quantum Field Theory -- The Response Approach -- The Operator Approach -- Peculiarities of Gauge Theories -- A Panorama of the Literature. 
520 |a This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "... Quantum field theory is one of the great intellectual edifices in the history of human thought. ... This volume differs from other books on quantum field theory in its greater emphasis on the interaction of physics with mathematics. ... an impressive work of scholarship." (William G. Faris, SIAM Review, Vol. 50 (2), 2008)  "... it is a fun book for practicing quantum field theorists to browse, and it may be similarly enjoyed by mathematical colleagues. Its ultimate value may lie in encouraging students to enter this challenging interdisciplinary area of mathematics and physics. Summing Up: Recommended. Upper-division undergraduates through faculty." (M. C. Ogilvie, CHOICE, Vol. 44 (9), May, 2007). 
650 0 |a Mathematical physics. 
650 0 |a Mathematical analysis. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Functional analysis. 
650 0 |a Differential equations. 
650 1 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Analysis. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540825142 
776 0 8 |i Printed edition:  |z 9783540347620 
776 0 8 |i Printed edition:  |z 9783662500941 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-34764-4  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)