The Shaping of Arithmetic after C.F. Gauss's Disquisitiones Arithmeticae
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2007.
|
Edición: | 1st ed. 2007. |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- A Book's History
- A Book in Search of a Discipline (1801-1860)
- Several Disciplines and a Book (1860-1901)
- Algebraic Equations, Quadratic Forms, Higher Congruences: Key Mathematical Techniques of the Disquisitiones Arithmeticae
- The Disquisitiones Arithmeticae and the Theory of Equations
- Composition of Binary Quadratic Forms and the Foundations of Mathematics
- Composition of Quadratic Forms: An Algebraic Perspective
- The Unpublished Section Eight: On the Way to Function Fields over a Finite Field
- The German Reception of the Disquisitiones Arithmeticae: Institutions and Ideas
- A Network of Scientific Philanthropy: Humboldt's Relations with Number Theorists
- 'O ??ò?' A??????í???: The Rise of Pure Mathematics as Arithmetic with Gauss
- Complex Numbers and Complex Functions in Arithmetic
- From Reciprocity Laws to Ideal Numbers: An (Un)Known Manuscript by E.E. Kummer
- Elliptic Functions and Arithmetic
- Numbers as Model Objects of Mathematics
- The Concept of Number from Gauss to Kronecker
- On Arithmetization
- Number Theory and the Disquisitiones in France after 1850
- The Hermitian Form of Reading the Disquisitiones
- Number Theory at the Association française pour l'avancement des sciences
- Spotlighting Some Later Reactions
- An Overview on Italian Arithmetic after the Disquisitiones Arithmeticae
- Zolotarev's Theory of Algebraic Numbers
- Gauss Goes West: The Reception of the Disquisitiones Arithmeticae in the USA
- Gauss's Theorems in the Long Run: Three Case Studies
- Reduction Theory of Quadratic Forms: Towards Räumliche Anschauung in Minkowski's Early Work
- Gauss Sums
- The Development of the Principal Genus Theorem.