Cargando…

Serre's Problem on Projective Modules

"Serre's Conjecture", for the most part of the second half of the 20th century, - ferred to the famous statement made by J. -P. Serre in 1955, to the effect that one did not know if ?nitely generated projective modules were free over a polynomial ring k[x ,. . . ,x], where k is a ?eld...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lam, T.Y (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-34575-6
003 DE-He213
005 20220115061128.0
007 cr nn 008mamaa
008 100514s2006 gw | s |||| 0|eng d
020 |a 9783540345756  |9 978-3-540-34575-6 
024 7 |a 10.1007/978-3-540-34575-6  |2 doi 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.44  |2 23 
100 1 |a Lam, T.Y.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Serre's Problem on Projective Modules  |h [electronic resource] /  |c by T.Y. Lam. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XXII, 404 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a to Serre's Conjecture: 1955-1976 -- Foundations -- The "Classical" Results on Serre's Conjecture -- The Basic Calculus of Unimodular Rows -- Horrocks' Theorem -- Quillen's Methods -- K1-Analogue of Serre's Conjecture -- The Quadratic Analogue of Serre's Conjecture -- References for Chapters I-VII -- Appendix: Complete Intersections and Serre's Conjecture -- New Developments (since 1977) -- References for Chapter VIII. 
520 |a "Serre's Conjecture", for the most part of the second half of the 20th century, - ferred to the famous statement made by J. -P. Serre in 1955, to the effect that one did not know if ?nitely generated projective modules were free over a polynomial ring k[x ,. . . ,x], where k is a ?eld. This statement was motivated by the fact that 1 n the af?ne scheme de?ned by k[x ,. . . ,x] is the algebro-geometric analogue of 1 n the af?ne n-space over k. In topology, the n-space is contractible, so there are only trivial bundles over it. Would the analogue of the latter also hold for the n-space in algebraic geometry? Since algebraic vector bundles over Speck[x ,. . . ,x] corre- 1 n spond to ?nitely generated projective modules over k[x ,. . . ,x], the question was 1 n tantamount to whether such projective modules were free, for any base ?eld k. ItwasquiteclearthatSerreintendedhisstatementasanopenproblemintheshe- theoretic framework of algebraic geometry, which was just beginning to emerge in the mid-1950s. Nowhere in his published writings had Serre speculated, one way or another, upon the possible outcome of his problem. However, almost from the start, a surmised positive answer to Serre's problem became known to the world as "Serre's Conjecture". Somewhat later, interest in this "Conjecture" was further heightened by the advent of two new (and closely related) subjects in mathematics: homological algebra, and algebraic K-theory. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Associative rings. 
650 0 |a Associative algebras. 
650 1 4 |a Commutative Rings and Algebras. 
650 2 4 |a Associative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540860563 
776 0 8 |i Printed edition:  |z 9783642062353 
776 0 8 |i Printed edition:  |z 9783540233176 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-34575-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)