|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-34138-3 |
003 |
DE-He213 |
005 |
20230406002651.0 |
007 |
cr nn 008mamaa |
008 |
100301s2006 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540341383
|9 978-3-540-34138-3
|
024 |
7 |
|
|a 10.1007/11752790
|2 doi
|
050 |
|
4 |
|a QA76.9.A43
|
072 |
|
7 |
|a UMB
|2 bicssc
|
072 |
|
7 |
|a COM051300
|2 bisacsh
|
072 |
|
7 |
|a UMB
|2 thema
|
082 |
0 |
4 |
|a 518.1
|2 23
|
245 |
1 |
0 |
|a Subspace, Latent Structure and Feature Selection
|h [electronic resource] :
|b Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers /
|c edited by Craig Saunders, Marko Grobelnik, Steve Gunn, John Shawe-Taylor.
|
250 |
|
|
|a 1st ed. 2006.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2006.
|
300 |
|
|
|a X, 209 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Theoretical Computer Science and General Issues,
|x 2512-2029 ;
|v 3940
|
505 |
0 |
|
|a Invited Contributions -- Discrete Component Analysis -- Overview and Recent Advances in Partial Least Squares -- Random Projection, Margins, Kernels, and Feature-Selection -- Some Aspects of Latent Structure Analysis -- Feature Selection for Dimensionality Reduction -- Contributed Papers -- Auxiliary Variational Information Maximization for Dimensionality Reduction -- Constructing Visual Models with a Latent Space Approach -- Is Feature Selection Still Necessary? -- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data -- Incorporating Constraints and Prior Knowledge into Factorization Algorithms - An Application to 3D Recovery -- A Simple Feature Extraction for High Dimensional Image Representations -- Identifying Feature Relevance Using a Random Forest -- Generalization Bounds for Subspace Selection and Hyperbolic PCA -- Less Biased Measurement of Feature Selection Benefits.
|
650 |
|
0 |
|a Algorithms.
|
650 |
|
0 |
|a Computer science-Mathematics.
|
650 |
|
0 |
|a Mathematical statistics.
|
650 |
|
0 |
|a Computer science.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Computer vision.
|
650 |
|
0 |
|a Pattern recognition systems.
|
650 |
1 |
4 |
|a Algorithms.
|
650 |
2 |
4 |
|a Probability and Statistics in Computer Science.
|
650 |
2 |
4 |
|a Theory of Computation.
|
650 |
2 |
4 |
|a Artificial Intelligence.
|
650 |
2 |
4 |
|a Computer Vision.
|
650 |
2 |
4 |
|a Automated Pattern Recognition.
|
700 |
1 |
|
|a Saunders, Craig.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Grobelnik, Marko.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Gunn, Steve.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Shawe-Taylor, John.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540823810
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540341376
|
830 |
|
0 |
|a Theoretical Computer Science and General Issues,
|x 2512-2029 ;
|v 3940
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/11752790
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
912 |
|
|
|a ZDB-2-LNC
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|