Cargando…

Effective Computational Geometry for Curves and Surfaces

Computational geometry emerged as a discipline in the seventies and has had considerable success in improving the asymptotic complexity of the solutions tobasicgeometricproblemsincludingconstructionsofdatastructures,convex hulls, triangulations, Voronoi diagrams and geometric arrangements as well as...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Boissonnat, Jean-Daniel (Editor ), Teillaud, Monique (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Mathematics and Visualization,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-33259-6
003 DE-He213
005 20220116233005.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540332596  |9 978-3-540-33259-6 
024 7 |a 10.1007/978-3-540-33259-6  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
245 1 0 |a Effective Computational Geometry for Curves and Surfaces  |h [electronic resource] /  |c edited by Jean-Daniel Boissonnat, Monique Teillaud. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XII, 344 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics and Visualization,  |x 2197-666X 
505 0 |a 1 Arrangements - Efi Fogel, Dan Halperin, Lutz Kettner, Monique Teillaud, Ron Wein, Nicola Wolpert -- 2 Curved Voronoi Diagrams - Jean-Daniel Boissonnat, Camille Wormser, Mariette Yvinec -- 3 Algebraic Issues in Computational Geometry - Bernard Mourrain, Sylvain Pion, Susanne Schmitt, Jean-Pierre Técourt, Elias Tsigaridas, Nicola Wolpert -- 4 Differential Geometry on Discrete Surfaces - David Cohen-Steiner, Jean-Marie Morvan -- 5 Meshing of Surfaces - Jean-Daniel Boissonnat, David Cohen-Steiner, Bernard Mourrain, Günter Rote, Gert Vegter -- 6 Delaunay Triangulation Based Surface Reconstruction - Frédéric Cazals, Joachim Giesen -- 7 Computational Topology: An Introduction - Günter Rote, Gert Vegter -- 8 Appendix - Generic Programming and the Cgal Library - Efi Fogel, Monique Teillaud -- References -- Index. 
520 |a Computational geometry emerged as a discipline in the seventies and has had considerable success in improving the asymptotic complexity of the solutions tobasicgeometricproblemsincludingconstructionsofdatastructures,convex hulls, triangulations, Voronoi diagrams and geometric arrangements as well as geometric optimisation. However, in the mid-nineties, it was recognized that the computational geometry techniques were far from satisfactory in practice and a vigorous e?ort has been undertaken to make computational geometry more practical. This e?ort led to major advances in robustness, geometric software engineering and experimental studies, and to the development of a large library of computational geometry algorithms, Cgal. The goal of this book is to take into consideration the multidisciplinary nature of the problem and to provide solid mathematical and algorithmic foundationsfore?ectivecomputationalgeometryforcurvesandsurfaces. This book covers two main approaches. In a ?rst part, we discuss exact geometric algorithms for curves and s- faces. We revisit two prominent data structures of computational geometry, namely arrangements (Chap. 1) and Voronoi diagrams (Chap. 2) in order to understand how these structures, which are well-known for linear objects, behave when de?ned on curved objects. The mathematical properties of these structures are presented together with algorithms for their construction. To ensure the e?ectiveness of our algorithms, the basic numerical computations that need to be performed are precisely speci?ed, and tradeo?s are considered between the complexity of the algorithms (i. e. the number of primitive calls), and the complexity of the primitives and their numerical stability. Chap. 
650 0 |a Geometry. 
650 0 |a Mathematics-Data processing. 
650 0 |a Information visualization. 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 0 |a Numerical analysis. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Geometry. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Data and Information Visualization. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
700 1 |a Boissonnat, Jean-Daniel.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Teillaud, Monique.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540822356 
776 0 8 |i Printed edition:  |z 9783642069871 
776 0 8 |i Printed edition:  |z 9783540332589 
830 0 |a Mathematics and Visualization,  |x 2197-666X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-33259-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)