|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-33019-6 |
003 |
DE-He213 |
005 |
20220116021526.0 |
007 |
cr nn 008mamaa |
008 |
100301s2006 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540330196
|9 978-3-540-33019-6
|
024 |
7 |
|
|a 10.1007/3-540-33019-4
|2 doi
|
050 |
|
4 |
|a TA329-348
|
050 |
|
4 |
|a TA345-345.5
|
072 |
|
7 |
|a TBJ
|2 bicssc
|
072 |
|
7 |
|a TEC009000
|2 bisacsh
|
072 |
|
7 |
|a TBJ
|2 thema
|
082 |
0 |
4 |
|a 620
|2 23
|
245 |
1 |
0 |
|a Multi-Objective Machine Learning
|h [electronic resource] /
|c edited by Yaochu Jin.
|
250 |
|
|
|a 1st ed. 2006.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2006.
|
300 |
|
|
|a XIV, 660 p. 254 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Studies in Computational Intelligence,
|x 1860-9503 ;
|v 16
|
505 |
0 |
|
|a Multi-Objective Clustering, Feature Extraction and Feature Selection -- Feature Selection Using Rough Sets -- Multi-Objective Clustering and Cluster Validation -- Feature Selection for Ensembles Using the Multi-Objective Optimization Approach -- Feature Extraction Using Multi-Objective Genetic Programming -- Multi-Objective Learning for Accuracy Improvement -- Regression Error Characteristic Optimisation of Non-Linear Models -- Regularization for Parameter Identification Using Multi-Objective Optimization -- Multi-Objective Algorithms for Neural Networks Learning -- Generating Support Vector Machines Using Multi-Objective Optimization and Goal Programming -- Multi-Objective Optimization of Support Vector Machines -- Multi-Objective Evolutionary Algorithm for Radial Basis Function Neural Network Design -- Minimizing Structural Risk on Decision Tree Classification -- Multi-objective Learning Classifier Systems -- Multi-Objective Learning for Interpretability Improvement -- Simultaneous Generation of Accurate and Interpretable Neural Network Classifiers -- GA-Based Pareto Optimization for Rule Extraction from Neural Networks -- Agent Based Multi-Objective Approach to Generating Interpretable Fuzzy Systems -- Multi-objective Evolutionary Algorithm for Temporal Linguistic Rule Extraction -- Multiple Objective Learning for Constructing Interpretable Takagi-Sugeno Fuzzy Model -- Multi-Objective Ensemble Generation -- Pareto-Optimal Approaches to Neuro-Ensemble Learning -- Trade-Off Between Diversity and Accuracy in Ensemble Generation -- Cooperative Coevolution of Neural Networks and Ensembles of Neural Networks -- Multi-Objective Structure Selection for RBF Networks and Its Application to Nonlinear System Identification -- Fuzzy Ensemble Design through Multi-Objective Fuzzy Rule Selection -- Applications of Multi-Objective Machine Learning -- Multi-Objective Optimisation for Receiver Operating Characteristic Analysis -- Multi-Objective Design of Neuro-Fuzzy Controllers for Robot Behavior Coordination -- Fuzzy Tuning for the Docking Maneuver Controller of an Automated Guided Vehicle -- A Multi-Objective Genetic Algorithm for Learning Linguistic Persistent Queries in Text Retrieval Environments -- Multi-Objective Neural Network Optimization for Visual Object Detection.
|
520 |
|
|
|a Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems.
|
650 |
|
0 |
|a Engineering mathematics.
|
650 |
|
0 |
|a Engineering-Data processing.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a System theory.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
1 |
4 |
|a Mathematical and Computational Engineering Applications.
|
650 |
2 |
4 |
|a Artificial Intelligence.
|
650 |
2 |
4 |
|a Complex Systems.
|
650 |
2 |
4 |
|a Theoretical, Mathematical and Computational Physics.
|
700 |
1 |
|
|a Jin, Yaochu.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642067969
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540818359
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540306764
|
830 |
|
0 |
|a Studies in Computational Intelligence,
|x 1860-9503 ;
|v 16
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/3-540-33019-4
|z Texto Completo
|
912 |
|
|
|a ZDB-2-ENG
|
912 |
|
|
|a ZDB-2-SXE
|
950 |
|
|
|a Engineering (SpringerNature-11647)
|
950 |
|
|
|a Engineering (R0) (SpringerNature-43712)
|