Cargando…

Extending the Scalability of Linkage Learning Genetic Algorithms Theory & Practice /

Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, unable to learn linkage among genes, most GAs employed in practice nowadays suffer from the linkage problem, which refers to the need of appropr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chen, Ying-ping (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Studies in Fuzziness and Soft Computing, 190
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-32413-3
003 DE-He213
005 20220119160818.0
007 cr nn 008mamaa
008 100805s2006 gw | s |||| 0|eng d
020 |a 9783540324133  |9 978-3-540-32413-3 
024 7 |a 10.1007/b102053  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Chen, Ying-ping.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Extending the Scalability of Linkage Learning Genetic Algorithms  |h [electronic resource] :  |b Theory & Practice /  |c by Ying-ping Chen. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XX, 120 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 190 
505 0 |a Introduction -- Genetic Algorithms and Genetic Linkage -- Genetic Linkage Learning Techniques -- Linkage Learning Genetic Algorithm -- Preliminaries: Assumptions and the Test Problem -- A First Improvement: Using Promoters -- Convergence Time for the Linkage Learning Genetic Algorithm.-Introducing Subchromosome Representations -- Conclusions. 
520 |a Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, unable to learn linkage among genes, most GAs employed in practice nowadays suffer from the linkage problem, which refers to the need of appropriately arranging or adaptively ordering the genes on chromosomes during the evolutionary process. These GAs require their users to possess prior domain knowledge of the problem such that the genes on chromosomes can be correctly arranged in advance. One way to alleviate the burden of GA users is to make the algorithm capable of adapting and learning genetic linkage by itself. In order to tackle the linkage problem, the linkage learning genetic algorithm (LLGA) was proposed using a unique combination of the (gene number, allele) coding scheme and an exchange crossover to permit GAs to learn tight linkage of building blocks through a special probabilistic expression. While the LLGA performs much better on badly scaled problems than simple GAs, it does not work well on uniformly scaled problems as other competent GAs. Therefore, we need to understand why it is so and need to know how to design a better LLGA or whether there are certain limits of such a linkage learning process. This book aims to gain better understanding of the LLGA in theory and to improve the LLGA's performance in practice. It starts with a survey and classification of the existing genetic linkage learning techniques and describes the steps and approaches taken to tackle the research topics, including using promoters, developing the convergence time model, and adopting subchromosomes. It also provides the experimental results for observation of the linkage learning process as well as for verification of the theoretical models proposed in this study. 
650 0 |a Artificial intelligence. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Population genetics. 
650 0 |a Bioinformatics. 
650 0 |a Biotechnology. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Population Genetics. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Biotechnology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642066719 
776 0 8 |i Printed edition:  |z 9783540814726 
776 0 8 |i Printed edition:  |z 9783540284598 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 190 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b102053  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)