Cargando…

Foundations of Learning Classifier Systems

This volume brings together recent theoretical work in Learning Classifier Systems (LCS), which is a Machine Learning technique combining Genetic Algorithms and Reinforcement Learning. It includes self-contained background chapters on related fields (reinforcement learning and evolutionary computati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Bull, Larry (Editor ), Kovacs, Tim (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Studies in Fuzziness and Soft Computing, 183
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Section 1 - Rule Discovery. Population Dynamics of Genetic Algorithms. Approximating Value Functions in Classifier Systems. Two Simple Learning Classifier Systems. Computational Complexity of the XCS Classifier System. An Analysis of Continuous-Valued Representations for Learning Classifier Systems
  • Section 2 - Credit Assignment. Reinforcement Learning: a Brief Overview. A Mathematical Framework for Studying Learning Classifier Systems. Rule Fitness and Pathology in Learning Classifier Systems. Learning Classifier Systems: A Reinforcement Learning Perspective. Learning Classifier Systems with Convergence and Generalization
  • Section 3 - Problem Characterization. On the Classification of Maze Problems. What Makes a Problem Hard?