Cargando…

Support Vector Machines: Theory and Applications

The support vector machine (SVM) has become one of the standard tools for machine learning and data mining. This carefully edited volume presents the state of the art of the mathematical foundation of SVM in statistical learning theory, as well as novel algorithms and applications. Support Vector Ma...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Wang, Lipo (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Studies in Fuzziness and Soft Computing, 177
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-32384-6
003 DE-He213
005 20220117231937.0
007 cr nn 008mamaa
008 100805s2005 gw | s |||| 0|eng d
020 |a 9783540323846  |9 978-3-540-32384-6 
024 7 |a 10.1007/b95439  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
245 1 0 |a Support Vector Machines: Theory and Applications  |h [electronic resource] /  |c edited by Lipo Wang. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a X, 431 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 177 
505 0 |a From the contents: Support Vector Machines - An Introduction -- Multiple Model Estimation for Nonlinear Classification -- Componentwise Least Squares Support Vector Machines -- Active Support Vector Learning with Statistical Queries -- Local Learning vs. Global Learning: An Introduction to Maxi-Min Margin Machine -- Active-Set Methods for Support Vector Machines -- Theoretical and Practical Model Selection Methods for Support Vector Classifiers -- Adaptive Discriminant and Quasiconformal Kernel Nearest Neighbor Classification -- Improving the Performance of the Support Vector Machine: Two Geometrical Scaling Methods -- An Accelerated Robust Support Vector Machine Algorithm -- Fuzzy Support Vector Machines with Automatic Membership Setting -- Iterative Single Data Algorithm for Training Kernel Machines from Huge Data Sets: Theory and Performance -- Kernel Discriminant Learning with Application to Face Recognition -- Fast Color Texture-based Object Detection in Images: Application to License Plate Localization. 
520 |a The support vector machine (SVM) has become one of the standard tools for machine learning and data mining. This carefully edited volume presents the state of the art of the mathematical foundation of SVM in statistical learning theory, as well as novel algorithms and applications. Support Vector Machines provides a selection of numerous real-world applications, such as bioinformatics, text categorization, pattern recognition, and object detection, written by leading experts in the respective fields. 
650 0 |a Computer science. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Theory of Computation. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Automated Pattern Recognition. 
700 1 |a Wang, Lipo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642063688 
776 0 8 |i Printed edition:  |z 9783540807032 
776 0 8 |i Printed edition:  |z 9783540243885 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 177 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b95439  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)