Cargando…

Recent Advances in Memetic Algorithms

Memetic algorithms are evolutionary algorithms that apply a local search process to refine solutions to hard problems. Memetic algorithms are the subject of intense scientific research and have been successfully applied to a multitude of real-world problems ranging from the construction of optimal u...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Hart, William E. (Editor ), Krasnogor, Natalio (Editor ), Smith, J.E (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Studies in Fuzziness and Soft Computing, 166
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-32363-1
003 DE-He213
005 20220117223947.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540323631  |9 978-3-540-32363-1 
024 7 |a 10.1007/3-540-32363-5  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
245 1 0 |a Recent Advances in Memetic Algorithms  |h [electronic resource] /  |c edited by William E. Hart, Natalio Krasnogor, J.E. Smith. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a X, 410 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 166 
505 0 |a to Memetic Algorithms -- Memetic Evolutionary Algorithms -- Applications of Memetic Algorithms -- An Evolutionary Approach for the Maximum Diversity Problem -- Multimeme Algorithms Using Fuzzy Logic Based Memes For Protein Structure Prediction -- A Memetic Algorithm Solving the VRP, the CARP and General Routing Problems with Nodes, Edges and Arcs -- Using Memetic Algorithms for Optimal Calibration of Automotive Internal Combustion Engines -- The Co-Evolution of Memetic Algorithms for Protein Structure Prediction -- Hybrid Evolutionary Approaches to Terminal Assignment in Communications Networks -- Effective Exploration & Exploitation of the Solution Space via Memetic Algorithms for the Circuit Partition Problem -- Methodological Aspects of Memetic Algorithms -- Towards Robust Memetic Algorithms -- NK-Fitness Landscapes and Memetic Algorithms with Greedy Operators and k-opt Local Search -- Self-Assembling of Local Searchers in Memetic Algorithms -- Designing Efficient Genetic and Evolutionary Algorithm Hybrids -- The Design of Memetic Algorithms for Scheduling and Timetabling Problems -- Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects -- Related Search Technologies -- A Memetic Learning Classifier System for Describing Continuous-Valued Problem Spaces -- Angels & Mortals: A New Combinatorial Optimization Algorithm. 
520 |a Memetic algorithms are evolutionary algorithms that apply a local search process to refine solutions to hard problems. Memetic algorithms are the subject of intense scientific research and have been successfully applied to a multitude of real-world problems ranging from the construction of optimal university exam timetables, to the prediction of protein structures and the optimal design of space-craft trajectories. "Recent Advances in Memetic Algorithms" presents a rich state-of-the-art gallery of works on Memetic algorithms. Recent Advances in Memetic Algorithms is the first book that focuses on this technology as the central topical matter. This monograph gives a coherent, integrated view on both good practice examples and new trends including a concise and self-contained introduction to Memetic Algorithms. It is a necessary read for postgraduate students and researchers interested in recent advances in search and optimization technologies based on Memetic algorithms, but can also be used as complement to undergraduate textbooks on artificial intelligence. 
650 0 |a Probabilities. 
650 0 |a Software engineering. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Probability Theory. 
650 2 4 |a Software Engineering. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Hart, William E.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Krasnogor, Natalio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Smith, J.E.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540803454 
776 0 8 |i Printed edition:  |z 9783642061769 
776 0 8 |i Printed edition:  |z 9783540229049 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 166 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-32363-5  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)