Cargando…

Experimental Research in Evolutionary Computation The New Experimentalism /

Experimentation is necessary - a purely theoretical approach is not reasonable. The new experimentalism, a development in the modern philosophy of science, considers that an experiment can have a life of its own. It provides a statistical methodology to learn from experiments, where the experimenter...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bartz-Beielstein, Thomas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Natural Computing Series,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-32027-2
003 DE-He213
005 20230719195511.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540320272  |9 978-3-540-32027-2 
024 7 |a 10.1007/3-540-32027-X  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Bartz-Beielstein, Thomas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Experimental Research in Evolutionary Computation  |h [electronic resource] :  |b The New Experimentalism /  |c by Thomas Bartz-Beielstein. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XIV, 215 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Natural Computing Series,  |x 2627-6461 
505 0 |a Basics -- Research in Evolutionary Computation -- The New Experimentalism -- Statistics for Computer Experiments -- Optimization Problems -- Designs for Computer Experiments -- Search Algorithms -- Results and Perspectives -- Comparison -- Understanding Performance -- Summary and Outlook. 
520 |a Experimentation is necessary - a purely theoretical approach is not reasonable. The new experimentalism, a development in the modern philosophy of science, considers that an experiment can have a life of its own. It provides a statistical methodology to learn from experiments, where the experimenter should distinguish between statistical significance and scientific meaning. This book introduces the new experimentalism in evolutionary computation, providing tools to understand algorithms and programs and their interaction with optimization problems. The book develops and applies statistical techniques to analyze and compare modern search heuristics such as evolutionary algorithms and particle swarm optimization. Treating optimization runs as experiments, the author offers methods for solving complex real-world problems that involve optimization via simulation, and he describes successful applications in engineering and industrial control projects. The book bridges the gap between theory and experiment by providing a self-contained experimental methodology and many examples, so it is suitable for practitioners and researchers and also for lecturers and students. It summarizes results from the author's consulting to industry and his experience teaching university courses and conducting tutorials at international conferences. The book will be supported online with downloads and exercises. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science. 
650 0 |a Computer simulation. 
650 0 |a Application software. 
650 0 |a Mathematical optimization. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Optimization. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642068737 
776 0 8 |i Printed edition:  |z 9783540820277 
776 0 8 |i Printed edition:  |z 9783540320265 
830 0 |a Natural Computing Series,  |x 2627-6461 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-32027-X  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)