Cargando…

Advances in Evolutionary Algorithms Theory, Design and Practice /

Genetic and evolutionary algorithms (GEAs) have often achieved an enviable success in solving optimization problems in a wide range of disciplines. The goal of this book is to provide effective optimization algorithms for solving a broad class of problems quickly, accurately, and reliably by employi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ahn, Chang Wook (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Studies in Computational Intelligence, 18
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-31759-3
003 DE-He213
005 20220114192537.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540317593  |9 978-3-540-31759-3 
024 7 |a 10.1007/3-540-31759-7  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
100 1 |a Ahn, Chang Wook.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Advances in Evolutionary Algorithms  |h [electronic resource] :  |b Theory, Design and Practice /  |c by Chang Wook Ahn. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XVI, 172 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 18 
505 0 |a Practical Genetic Algorithms -- Real-World Application: Routing Problem -- Elitist Compact Genetic Algorithms -- Real-coded Bayesian Optimization Algorithm -- Multiobjective Real-coded Bayesian Optimization Algorithm -- Conclusions. 
520 |a Genetic and evolutionary algorithms (GEAs) have often achieved an enviable success in solving optimization problems in a wide range of disciplines. The goal of this book is to provide effective optimization algorithms for solving a broad class of problems quickly, accurately, and reliably by employing evolutionary mechanisms. In this regard, five significant issues have been investigated: Bridging the gap between theory and practice of GEAs, thereby providing practical design guidelines. Demonstrating the practical use of the suggested road map. Offering a useful tool to significantly enhance the exploratory power in time-constrained and memory-limited applications. Providing a class of promising procedures that are capable of scalably solving hard problems in the continuous domain. Opening an important track for multiobjective GEA research that relies on decomposition principle. This book serves to play a decisive role in bringing forth a paradigm shift in future evolutionary computation. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642068607 
776 0 8 |i Printed edition:  |z 9783540820055 
776 0 8 |i Printed edition:  |z 9783540317586 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 18 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-31759-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)