|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-31728-9 |
003 |
DE-He213 |
005 |
20221012203949.0 |
007 |
cr nn 008mamaa |
008 |
100722s2005 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540317289
|9 978-3-540-31728-9
|
024 |
7 |
|
|a 10.1007/11559887
|2 doi
|
050 |
|
4 |
|a Q334-342
|
050 |
|
4 |
|a TA347.A78
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
072 |
|
7 |
|a UYQ
|2 thema
|
082 |
0 |
4 |
|a 006.3
|2 23
|
245 |
1 |
0 |
|a Deterministic and Statistical Methods in Machine Learning
|h [electronic resource] :
|b First International Workshop, Sheffield, UK, September 7-10, 2004. Revised Lectures /
|c edited by Joab Winkler, Neil Lawrence, Mahesan Niranjan.
|
250 |
|
|
|a 1st ed. 2005.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2005.
|
300 |
|
|
|a VIII, 341 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Artificial Intelligence,
|x 2945-9141 ;
|v 3635
|
505 |
0 |
|
|a Object Recognition via Local Patch Labelling -- Multi Channel Sequence Processing -- Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis -- Extensions of the Informative Vector Machine -- Efficient Communication by Breathing -- Guiding Local Regression Using Visualisation -- Transformations of Gaussian Process Priors -- Kernel Based Learning Methods: Regularization Networks and RBF Networks -- Redundant Bit Vectors for Quickly Searching High-Dimensional Regions -- Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis -- Ensemble Algorithms for Feature Selection -- Can Gaussian Process Regression Be Made Robust Against Model Mismatch? -- Understanding Gaussian Process Regression Using the Equivalent Kernel -- Integrating Binding Site Predictions Using Non-linear Classification Methods -- Support Vector Machine to Synthesise Kernels -- Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data -- Variational Bayes Estimation of Mixing Coefficients -- A Comparison of Condition Numbers for the Full Rank Least Squares Problem -- SVM Based Learning System for Information Extraction.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Machine theory.
|
650 |
|
0 |
|a Database management.
|
650 |
|
0 |
|a Information storage and retrieval systems.
|
650 |
|
0 |
|a Computer vision.
|
650 |
|
0 |
|a Pattern recognition systems.
|
650 |
1 |
4 |
|a Artificial Intelligence.
|
650 |
2 |
4 |
|a Formal Languages and Automata Theory.
|
650 |
2 |
4 |
|a Database Management.
|
650 |
2 |
4 |
|a Information Storage and Retrieval.
|
650 |
2 |
4 |
|a Computer Vision.
|
650 |
2 |
4 |
|a Automated Pattern Recognition.
|
700 |
1 |
|
|a Winkler, Joab.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Lawrence, Neil.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Niranjan, Mahesan.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540816072
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540290735
|
830 |
|
0 |
|a Lecture Notes in Artificial Intelligence,
|x 2945-9141 ;
|v 3635
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/11559887
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
912 |
|
|
|a ZDB-2-LNC
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|