Cargando…

Kernel Based Algorithms for Mining Huge Data Sets Supervised, Semi-supervised, and Unsupervised Learning /

"Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Huang, Te-Ming (Autor), Kecman, Vojislav (Autor), Kopriva, Ivica (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Studies in Computational Intelligence, 17
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-31689-3
003 DE-He213
005 20220116011815.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540316893  |9 978-3-540-31689-3 
024 7 |a 10.1007/3-540-31689-2  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Huang, Te-Ming.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Kernel Based Algorithms for Mining Huge Data Sets  |h [electronic resource] :  |b Supervised, Semi-supervised, and Unsupervised Learning /  |c by Te-Ming Huang, Vojislav Kecman, Ivica Kopriva. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XVI, 260 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 17 
505 0 |a Support Vector Machines in Classification and Regression - An Introduction -- Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets: Theory and Performance -- Feature Reduction with Support Vector Machines and Application in DNA Microarray Analysis -- Semi-supervised Learning and Applications -- Unsupervised Learning by Principal and Independent Component Analysis. 
520 |a "Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas. 
650 0 |a Data mining. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Kecman, Vojislav.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kopriva, Ivica.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642068560 
776 0 8 |i Printed edition:  |z 9783540819974 
776 0 8 |i Printed edition:  |z 9783540316817 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 17 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-31689-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)