Cargando…

Identification of Nonlinear Systems Using Neural Networks and Polynomial Models A Block-Oriented Approach /

This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Janczak, Andrzej (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Lecture Notes in Control and Information Sciences, 310
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-31596-4
003 DE-He213
005 20220114073132.0
007 cr nn 008mamaa
008 100806s2005 gw | s |||| 0|eng d
020 |a 9783540315964  |9 978-3-540-31596-4 
024 7 |a 10.1007/b98334  |2 doi 
050 4 |a TJ212-225 
050 4 |a TJ210.2-211.495 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Janczak, Andrzej.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Identification of Nonlinear Systems Using Neural Networks and Polynomial Models  |h [electronic resource] :  |b A Block-Oriented Approach /  |c by Andrzej Janczak. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XIV, 199 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 1610-7411 ;  |v 310 
505 0 |a Introduction -- Neural network Wiener models -- Neural network Hammerstein models -- Polynomial Wiener models -- Polynomial Hammerstein models -- Applications. 
520 |a This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new and original methods concerning the model parameter adjusting with gradient-based techniques. "Identification of Nonlinear Systems Using Neural Networks and Polynomal Models" is useful for researchers, engineers and graduate students in nonlinear systems and neural network theory. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Mechanics, Applied. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Control, Robotics, Automation. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Complex Systems. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540804123 
776 0 8 |i Printed edition:  |z 9783540231851 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 1610-7411 ;  |v 310 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b98334  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
912 |a ZDB-2-LNI 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)