|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-31589-6 |
003 |
DE-He213 |
005 |
20220118131051.0 |
007 |
cr nn 008mamaa |
008 |
100806s2005 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540315896
|9 978-3-540-31589-6
|
024 |
7 |
|
|a 10.1007/b105592
|2 doi
|
050 |
|
4 |
|a TJ212-225
|
050 |
|
4 |
|a TJ210.2-211.495
|
072 |
|
7 |
|a TJFM
|2 bicssc
|
072 |
|
7 |
|a TEC004000
|2 bisacsh
|
072 |
|
7 |
|a TJFM
|2 thema
|
082 |
0 |
4 |
|a 629.8
|2 23
|
100 |
1 |
|
|a Ma, Chuan.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Nonblocking Supervisory Control of State Tree Structures
|h [electronic resource] /
|c by Chuan Ma, W. Murray Wonham.
|
250 |
|
|
|a 1st ed. 2005.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2005.
|
300 |
|
|
|a XV, 192 p. 114 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Control and Information Sciences,
|x 1610-7411 ;
|v 317
|
505 |
0 |
|
|a Introduction -- State Tree Structures: Basics -- Nonblocking Supervisory Control of State Tree Structures -- Symbolic Computation of State Tree Structures -- The Production Cell Example -- The AIP Example -- Conclusions and Future Research.
|
520 |
|
|
|a This monograph proposes how to manage complexity by organizing the system as a State Tree Structure (STS). Based on STS, which is an adaptation of statecharts to Supervisory Control Theory, an efficient recursive symbolic algorithm is presented that can perform nonblocking supervisory control design in reasonable time and memory for complex systems. Nonblocking Supervisory Control of State Tree Structures presents how this results in tractable and highly comprehensible controllers, especially to users who are not specialists in Discrete - Event Systems.
|
650 |
|
0 |
|a Control engineering.
|
650 |
|
0 |
|a Robotics.
|
650 |
|
0 |
|a Automation.
|
650 |
|
0 |
|a Multibody systems.
|
650 |
|
0 |
|a Vibration.
|
650 |
|
0 |
|a Mechanics, Applied.
|
650 |
|
0 |
|a System theory.
|
650 |
|
0 |
|a Control theory.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
1 |
4 |
|a Control, Robotics, Automation.
|
650 |
2 |
4 |
|a Multibody Systems and Mechanical Vibrations.
|
650 |
2 |
4 |
|a Systems Theory, Control .
|
650 |
2 |
4 |
|a Artificial Intelligence.
|
700 |
1 |
|
|a Wonham, W. Murray.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540808244
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540250692
|
830 |
|
0 |
|a Lecture Notes in Control and Information Sciences,
|x 1610-7411 ;
|v 317
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/b105592
|z Texto Completo
|
912 |
|
|
|a ZDB-2-ENG
|
912 |
|
|
|a ZDB-2-SXE
|
912 |
|
|
|a ZDB-2-LNI
|
950 |
|
|
|a Engineering (SpringerNature-11647)
|
950 |
|
|
|a Engineering (R0) (SpringerNature-43712)
|