|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-31561-2 |
003 |
DE-He213 |
005 |
20220117174510.0 |
007 |
cr nn 008mamaa |
008 |
100806s2005 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540315612
|9 978-3-540-31561-2
|
024 |
7 |
|
|a 10.1007/b104209
|2 doi
|
050 |
|
4 |
|a QA174-183
|
072 |
|
7 |
|a PBG
|2 bicssc
|
072 |
|
7 |
|a MAT002010
|2 bisacsh
|
072 |
|
7 |
|a PBG
|2 thema
|
082 |
0 |
4 |
|a 512.2
|2 23
|
100 |
1 |
|
|a Letellier, Emmanuel.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras
|h [electronic resource] /
|c by Emmanuel Letellier.
|
250 |
|
|
|a 1st ed. 2005.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2005.
|
300 |
|
|
|a XI, 165 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 1859
|
505 |
0 |
|
|a Preface -- Introduction -- Connected Reductive Groups and their Lie Algebras -- Deligne-Lusztig Induction -- Local Systems and Perverse Shaeves -- Geometrical Induction -- Deligne-Lusztig Induction and Fourier Transforms -- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits -- References -- Index.
|
520 |
|
|
|a The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lusztig's character sheaves theory. He conjectures a commutation formula between Deligne-Lusztig induction and Fourier transforms that he proves in many cases. As an application the computation of the values of the trigonometric sums (on reductive Lie algebras) is shown to reduce to the computation of the generalized Green functions and to the computation of some fourth roots of unity.
|
650 |
|
0 |
|a Group theory.
|
650 |
1 |
4 |
|a Group Theory and Generalizations.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540805786
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540240204
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 1859
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/b104209
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|