Cargando…

Abstract Harmonic Analysis of Continuous Wavelet Transforms

This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Math...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Führ, Hartmut (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Lecture Notes in Mathematics, 1863
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-31552-0
003 DE-He213
005 20220112233626.0
007 cr nn 008mamaa
008 100806s2005 gw | s |||| 0|eng d
020 |a 9783540315520  |9 978-3-540-31552-0 
024 7 |a 10.1007/b104912  |2 doi 
050 4 |a QA403-403.3 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.785  |2 23 
100 1 |a Führ, Hartmut.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Abstract Harmonic Analysis of Continuous Wavelet Transforms  |h [electronic resource] /  |c by Hartmut Führ. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a X, 193 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1863 
505 0 |a Introduction -- Wavelet Transforms and Group Representations -- The Plancherel Transform for Locally Compact Groups -- Plancherel Inversion and Wavelet Transforms -- Admissible Vectors for Group Extension -- Sampling Theorems for the Heisenberg Group -- References -- Index. 
520 |a This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a - reasonably self-contained - exposition of Plancherel theory. Therefore, the book can also be read as a problem-driven introduction to the Plancherel formula. 
650 0 |a Harmonic analysis. 
650 0 |a Fourier analysis. 
650 1 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Fourier Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540806608 
776 0 8 |i Printed edition:  |z 9783540242598 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1863 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b104912  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)