Cargando…

Quantum Field Theory and Noncommutative Geometry

This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably n...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Carow-Watamura, Ursula (Editor ), Maeda, Yoshiaki (Editor ), Watamura, Satoshi (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Lecture Notes in Physics, 662
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-31526-1
003 DE-He213
005 20220115202543.0
007 cr nn 008mamaa
008 100806s2005 gw | s |||| 0|eng d
020 |a 9783540315261  |9 978-3-540-31526-1 
024 7 |a 10.1007/b102320  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
245 1 0 |a Quantum Field Theory and Noncommutative Geometry  |h [electronic resource] /  |c edited by Ursula Carow-Watamura, Yoshiaki Maeda, Satoshi Watamura. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a X, 298 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 662 
505 0 |a Noncommutative Geometry -- Poisson Geometry and Deformation Quantization -- Applications in Physics -- Topological Quantum Field Theory. 
520 |a This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field. 
650 0 |a Mathematical physics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Algebraic topology. 
650 0 |a Geometry, Differential. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Mathematical Methods in Physics. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
700 1 |a Carow-Watamura, Ursula.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Maeda, Yoshiaki.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Watamura, Satoshi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642062872 
776 0 8 |i Printed edition:  |z 9783540805236 
776 0 8 |i Printed edition:  |z 9783540239000 
830 0 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 662 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b102320  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)