Cargando…

The Local Langlands Conjecture for GL(2)

If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multip...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bushnell, Colin J. (Autor), Henniart, Guy (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 335
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-31511-7
003 DE-He213
005 20220113165348.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540315117  |9 978-3-540-31511-7 
024 7 |a 10.1007/3-540-31511-X  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Bushnell, Colin J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Local Langlands Conjecture for GL(2)  |h [electronic resource] /  |c by Colin J. Bushnell, Guy Henniart. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XII, 340 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 2196-9701 ;  |v 335 
505 0 |a Smooth Representations -- Finite Fields -- Induced Representations of Linear Groups -- Cuspidal Representations -- Parametrization of Tame Cuspidals -- Functional Equation -- Representations of Weil Groups -- The Langlands Correspondence -- The Weil Representation -- Arithmetic of Dyadic Fields -- Ordinary Representations -- The Dyadic Langlands Correspondence -- The Jacquet-Langlands Correspondence. 
520 |a If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n,F). The local Langlands Conjecture for GL(n) postulates the existence of a canonical bijection between such objects and n-dimensional representations of the Weil group, generalizing class field theory. This conjecture has now been proved for all F and n, but the arguments are long and rely on many deep ideas and techniques. This book gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groups and the structure theory of local fields. It uses only local methods, with no appeal to harmonic analysis on adele groups. 
650 0 |a Number theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Group theory. 
650 1 4 |a Number Theory. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
700 1 |a Henniart, Guy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540819936 
776 0 8 |i Printed edition:  |z 9783642068539 
776 0 8 |i Printed edition:  |z 9783540314868 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 2196-9701 ;  |v 335 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-31511-X  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)