Cargando…

Introductory Lectures on Fluctuations of Lévy Processes with Applications

Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their mathematical significance is justified by their application in many areas of classical and modern stochastic models including...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kyprianou, Andreas E. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-31343-4
003 DE-He213
005 20220117014027.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540313434  |9 978-3-540-31343-4 
024 7 |a 10.1007/978-3-540-31343-4  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Kyprianou, Andreas E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introductory Lectures on Fluctuations of Lévy Processes with Applications  |h [electronic resource] /  |c by Andreas E. Kyprianou. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XIII, 378 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Lévy Processes and Applications -- TheLévy-Itô Decomposition and Path Structure -- More Distributional and Path-Related Properties -- General Storage Models and Paths of Bounded Variation -- Subordinators at First Passage and Renewal Measures -- The Wiener-Hopf Factorisation -- Lévy Processes at First Passage and Insurance Risk -- Exit Problems for Spectrally Negative Processes -- Applications to Optimal Stopping Problems -- Continuous-State Branching Processes. 
520 |a Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their mathematical significance is justified by their application in many areas of classical and modern stochastic models including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance and continuous-state branching processes. This text book forms the basis of a graduate course on the theory and applications of Lévy processes, from the perspective of their path fluctuations. Central to the presentation are decompositions of the paths of Lévy processes in terms of their local maxima and an understanding of their short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical transparency and explicitness. Each chapter has a comprehensive set of exercises with complete solutions. 
650 0 |a Mathematical analysis. 
650 0 |a Probabilities. 
650 0 |a Social sciences-Mathematics. 
650 1 4 |a Analysis. 
650 2 4 |a Probability Theory. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540819769 
776 0 8 |i Printed edition:  |z 9783540313427 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-31343-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)