Cargando…

Rule-Based Evolutionary Online Learning Systems A Principled Approach to LCS Analysis and Design /

This book offers a comprehensive introduction to learning classifier systems (LCS) - or more generally, rule-based evolutionary online learning systems. LCSs learn interactively - much like a neural network - but with an increased adaptivity and flexibility. This book provides the necessary backgrou...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Butz, Martin V. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Studies in Fuzziness and Soft Computing, 191
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-31231-4
003 DE-He213
005 20220116183849.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540312314  |9 978-3-540-31231-4 
024 7 |a 10.1007/b104669  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Butz, Martin V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Rule-Based Evolutionary Online Learning Systems  |h [electronic resource] :  |b A Principled Approach to LCS Analysis and Design /  |c by Martin V. Butz. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XXI, 259 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 191 
505 0 |a Prerequisites -- Simple Learning Classifier Systems -- The XCS Classifier System -- How XCS Works: Ensuring Effective Evolutionary Pressures -- When XCS Works: Towards Computational Complexity -- Effective XCS Search: Building Block Processing -- XCS in Binary Classification Problems -- XCS in Multi-Valued Problems -- XCS in Reinforcement Learning Problems -- Facetwise LCS Design -- Towards Cognitive Learning Classifier Systems -- Summary and Conclusions. 
520 |a This book offers a comprehensive introduction to learning classifier systems (LCS) - or more generally, rule-based evolutionary online learning systems. LCSs learn interactively - much like a neural network - but with an increased adaptivity and flexibility. This book provides the necessary background knowledge on problem types, genetic algorithms, and reinforcement learning as well as a principled, modular analysis approach to understand, analyze, and design LCSs. The analysis is exemplarily carried through on the XCS classifier system - the currently most prominent system in LCS research. Several enhancements are introduced to XCS and evaluated. An application suite is provided including classification, reinforcement learning and data-mining problems. Reconsidering John Holland's original vision, the book finally discusses the current potentials of LCSs for successful applications in cognitive science and related areas. 
650 0 |a Computer science. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Neurosciences. 
650 0 |a Mathematics. 
650 1 4 |a Theory of Computation. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Neuroscience. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642064777 
776 0 8 |i Printed edition:  |z 9783540809371 
776 0 8 |i Printed edition:  |z 9783540253792 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 191 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b104669  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)