Cargando…

Rule-Based Evolutionary Online Learning Systems A Principled Approach to LCS Analysis and Design /

This book offers a comprehensive introduction to learning classifier systems (LCS) - or more generally, rule-based evolutionary online learning systems. LCSs learn interactively - much like a neural network - but with an increased adaptivity and flexibility. This book provides the necessary backgrou...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Butz, Martin V. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Studies in Fuzziness and Soft Computing, 191
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:This book offers a comprehensive introduction to learning classifier systems (LCS) - or more generally, rule-based evolutionary online learning systems. LCSs learn interactively - much like a neural network - but with an increased adaptivity and flexibility. This book provides the necessary background knowledge on problem types, genetic algorithms, and reinforcement learning as well as a principled, modular analysis approach to understand, analyze, and design LCSs. The analysis is exemplarily carried through on the XCS classifier system - the currently most prominent system in LCS research. Several enhancements are introduced to XCS and evaluated. An application suite is provided including classification, reinforcement learning and data-mining problems. Reconsidering John Holland's original vision, the book finally discusses the current potentials of LCSs for successful applications in cognitive science and related areas.
Descripción Física:XXI, 259 p. online resource.
ISBN:9783540312314
ISSN:1860-0808 ;