Cargando…

Exploratory Analysis of Spatial and Temporal Data A Systematic Approach /

Exploratory data analysis (EDA) is about detecting and describing patterns, trends, and relations in data, motivated by certain purposes of investigation. As something relevant is detected in data, new questions arise, causing specific parts to be viewed in more detail. So EDA has a significant appe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Andrienko, Natalia (Autor), Andrienko, Gennady (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-31190-4
003 DE-He213
005 20220116052836.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540311904  |9 978-3-540-31190-4 
024 7 |a 10.1007/3-540-31190-4  |2 doi 
050 4 |a QA76.76.A65 
072 7 |a UB  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UX  |2 thema 
082 0 4 |a 005.3  |2 23 
100 1 |a Andrienko, Natalia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Exploratory Analysis of Spatial and Temporal Data  |h [electronic resource] :  |b A Systematic Approach /  |c by Natalia Andrienko, Gennady Andrienko. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XVI, 704 p. 282 illus., 37 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Data -- Tasks -- Tools -- Principles -- Conclusion. 
520 |a Exploratory data analysis (EDA) is about detecting and describing patterns, trends, and relations in data, motivated by certain purposes of investigation. As something relevant is detected in data, new questions arise, causing specific parts to be viewed in more detail. So EDA has a significant appeal: it involves hypothesis generation rather than mere hypothesis testing. The authors describe in detail and systemize approaches, techniques, and methods for exploring spatial and temporal data in particular. They start by developing a general view of data structures and characteristics and then build on top of this a general task typology, distinguishing between elementary and synoptic tasks. This typology is then applied to the description of existing approaches and technologies, resulting not just in recommendations for choosing methods but in a set of generic procedures for data exploration. Professionals practicing analysis will profit from tested solutions - illustrated in many examples - for reuse in the catalogue of techniques presented. Students and researchers will appreciate the detailed description and classification of exploration techniques, which are not limited to spatial data only. In addition, the general principles and approaches described will be useful for designers of new methods for EDA. 
650 0 |a Application software. 
650 0 |a Geographic information systems. 
650 0 |a Earth sciences. 
650 0 |a Information storage and retrieval systems. 
650 1 4 |a Computer and Information Systems Applications. 
650 2 4 |a Geographical Information System. 
650 2 4 |a Earth Sciences. 
650 2 4 |a Information Storage and Retrieval. 
700 1 |a Andrienko, Gennady.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540810865 
776 0 8 |i Printed edition:  |z 9783540259947 
776 0 8 |i Printed edition:  |z 9783662499962 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-31190-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)