Cargando…

Spectral Methods Fundamentals in Single Domains /

Since the publication of "Spectral Methods in Fluid Dynamics", spectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and prac...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Canuto, Claudio (Autor), Hussaini, M. Yousuff (Autor), Quarteroni, Alfio (Autor), Zang, Thomas A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Scientific Computation,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-30726-6
003 DE-He213
005 20220115023736.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540307266  |9 978-3-540-30726-6 
024 7 |a 10.1007/978-3-540-30726-6  |2 doi 
050 4 |a QC1-999 
072 7 |a PHD  |2 bicssc 
072 7 |a SCI041000  |2 bisacsh 
072 7 |a PHD  |2 thema 
082 0 4 |a 530  |2 23 
100 1 |a Canuto, Claudio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spectral Methods  |h [electronic resource] :  |b Fundamentals in Single Domains /  |c by Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XXII, 581 p. 106 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Scientific Computation,  |x 2198-2589 
505 0 |a Polynomial Approximation -- Basic Approaches to Constructing Spectral Methods -- Algebraic Systems and Solution Techniques -- Polynomial Approximation Theory -- Theory of Stability and Convergence -- Analysis of Model Boundary-Value Problems -- Erratum. 
520 |a Since the publication of "Spectral Methods in Fluid Dynamics", spectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and practical aspects of spectral methods that was the hallmark of the earlier book, Canuto et al. now incorporate the many improvements in the algorithms and the theory of spectral methods that have been made since 1988. The initial treatment Fundamentals in Single Domains discusses the fundamentals of the approximation of solutions to ordinary and partial differential equations on single domains by expansions in smooth, global basis functions. The first half of the book provides the algorithmic details of orthogonal expansions, transform methods, spectral discretization of differential equations plus their boundary conditions, and solution of the discretized equations by direct and iterative methods. The second half furnishes a comprehensive discussion of the mathematical theory of spectral methods on single domains, including approximation theory, stability and convergence, and illustrative applications of the theory to model boundary-value problems. Both the algorithmic and theoretical discussions cover spectral methods on tensor-product domains, triangles and tetrahedra. All chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is greatly expanded as are the set of numerical examples that illustrate the key properties of the various types of spectral approximations and the solution algorithms. A companion book "Evolution to Complex Geometries and Applications to Fluid Dynamics" contains an extensive survey of the essential algorithmic and theoretical aspects of spectral methods for complex geometries and provides detailed discussions of spectral algorithms for fluid dynamics in simple and complex geometries. . 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Mathematics-Data processing. 
650 0 |a Fluid mechanics. 
650 0 |a Continuum mechanics. 
650 1 4 |a Classical and Continuum Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Continuum Mechanics. 
700 1 |a Hussaini, M. Yousuff.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Quarteroni, Alfio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zang, Thomas A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540818472 
776 0 8 |i Printed edition:  |z 9783642068003 
776 0 8 |i Printed edition:  |z 9783540307259 
830 0 |a Scientific Computation,  |x 2198-2589 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-30726-6  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)