Cargando…

Deformations of Algebraic Schemes

The study of small and local deformations of algebraic varieties originates in the classical work of Kodaira and Spencer and its formalization by Grothendieck in the late 1950's. It has become increasingly important in algebraic geometry in every context where variational phenomena come into pl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sernesi, Edoardo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 334
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-30615-3
003 DE-He213
005 20220118121327.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540306153  |9 978-3-540-30615-3 
024 7 |a 10.1007/978-3-540-30615-3  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Sernesi, Edoardo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Deformations of Algebraic Schemes  |h [electronic resource] /  |c by Edoardo Sernesi. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XI, 342 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 2196-9701 ;  |v 334 
505 0 |a Introduction -- Infinitesimal Deformations: Extensions. Locally Trivial Deformations -- Formal Deformation Theory: Obstructions. Extensions of Schemes. Functors of Artin Rings. The Theorem of Schlessinger. The Local Moduli Functors -- Formal Versus Algebraic Deformations. Automorphisms and Prorepresentability -- Examples of Deformation Functors: Affine Schemes. Closed Subschemes. Invertible Sheaves. Morphisms -- Hilbert and Quot Schemes: Castelnuovo-Mumford Regularity. Flatness in the Projective Case. Hilbert Schemes. Quot Schemes. Flag Hilbert Schemes. Examples and Applications. Plane Curves -- Appendices: Flatness. Differentials. Smoothness. Complete Intersections. Functorial Language -- List of Symbols -- Bibliography. 
520 |a The study of small and local deformations of algebraic varieties originates in the classical work of Kodaira and Spencer and its formalization by Grothendieck in the late 1950's. It has become increasingly important in algebraic geometry in every context where variational phenomena come into play, and in classification theory, e.g. the study of the local properties of moduli spaces.Today deformation theory is highly formalized and has ramified widely within mathematics. This self-contained account of deformation theory in classical algebraic geometry (over an algebraically closed field) brings together for the first time some results previously scattered in the literature, with proofs that are relatively little known, yet of everyday relevance to algebraic geometers. Based on Grothendieck's functorial approach it covers formal deformation theory, algebraization, isotriviality, Hilbert schemes, Quot schemes and flag Hilbert schemes. It includes applications to the construction and properties of Severi varieties of families of plane nodal curves, space curves, deformations of quotient singularities, Hilbert schemes of points, local Picard functors, etc. Many examples are provided. Most of the algebraic results needed are proved. The style of exposition is kept at a level amenable to graduate students with an average background in algebraic geometry. 
650 0 |a Geometry. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 1 4 |a Geometry. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Commutative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540818229 
776 0 8 |i Printed edition:  |z 9783642067877 
776 0 8 |i Printed edition:  |z 9783540306085 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 2196-9701 ;  |v 334 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-30615-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)